Filter
(found 5545 products)
Book cover image
This book explores alternative ways of accomplishing secure information transfer with incoherent multi-photon pulses in contrast to conventional Quantum Key Distribution techniques. Most of the techniques presented in this book do not need conventional encryption. Furthermore, the book presents a technique whereby any symmetric key can be securely transferred using ...
Multi-photon Quantum Secure Communication
This book explores alternative ways of accomplishing secure information transfer with incoherent multi-photon pulses in contrast to conventional Quantum Key Distribution techniques. Most of the techniques presented in this book do not need conventional encryption. Furthermore, the book presents a technique whereby any symmetric key can be securely transferred using the polarization channel of an optical fiber for conventional data encryption. The work presented in this book has largely been practically realized, albeit in a laboratory environment, to offer proof of concept rather than building a rugged instrument that can withstand the rigors of a commercial environment.
https://magrudy-assets.storage.googleapis.com/9789811086175.jpg
178.490000 USD

Multi-photon Quantum Secure Communication

by Kam Wai Clifford Chan, Mayssaa El Rifai, Pramode K. Verma
Hardback
Book cover image
This book describes a broad research program on quantum communication. Here, a cryptographic key is exchanged by two parties using quantum states of light and the security of the system arises from the fundamental properties of quantum mechanics. The author developed new communication protocols using high-dimensional quantum states so that ...
High-Rate, High-Dimensional Quantum Key Distribution Systems
This book describes a broad research program on quantum communication. Here, a cryptographic key is exchanged by two parties using quantum states of light and the security of the system arises from the fundamental properties of quantum mechanics. The author developed new communication protocols using high-dimensional quantum states so that more than one classical bit is transferred by each photon. This approach helps circumvent some of the non-ideal properties of the experimental system, enabling record key rates on metropolitan distance scales. Another important aspect of the work is the encoding of the key on high-dimensional phase-randomized weak coherent states, combined with so-called decoy states to thwart a class of possible attacks on the system. The experiments are backed up by a rigorous security analysis of the system, which accounts for all known device non-idealities. The author goes on to demonstrate a scalable approach for increasing the dimension of the quantum states, and considers attacks on the system that use optimal quantum cloning techniques. This thesis captures the current state-of-the-art of the field of quantum communication in laboratory systems, and demonstrates that phase-randomized weak coherent states have application beyond quantum communication.
https://magrudy-assets.storage.googleapis.com/9783319989280.jpg
157.490000 USD

High-Rate, High-Dimensional Quantum Key Distribution Systems

by Nurul T. Islam
Hardback
Book cover image
This book explores critical phenomena in highly correlated quantum matter. Specifically, quantum antiferromagnets, magnon Bose condensates, and systems exhibiting deconfined quantum criticality are considered. The book's main achievement is the incorporation of both quantum and statistical fluctuations into a quantum field theoretic treatment of critical phenomena. This yields significant new ...
Interplay of Quantum and Statistical Fluctuations in Critical Quantum Matter
This book explores critical phenomena in highly correlated quantum matter. Specifically, quantum antiferromagnets, magnon Bose condensates, and systems exhibiting deconfined quantum criticality are considered. The book's main achievement is the incorporation of both quantum and statistical fluctuations into a quantum field theoretic treatment of critical phenomena. This yields significant new insights into an abundance of problems, positions them in a much more general context, and offers an unprecedented power to analyze experimental and numerical data and predict new effects. Further, a major result and overarching theme is the exploration of the scale-dependent coupling constant - an effect known in quantum chromodynamics as asymptotic freedom. The book provides the first analysis to reveal asymptotic freedom in the quantum magnetism context, and discusses many other manifestations. Another significant result concerns the development of a consistent theoretical framework that resolves a long-standing inconsistency in the theory of Bose condensation. Using the approach developed here, two new universality classes are subsequently identified. A final major result addresses the exotic scenario of deconfined quantum criticality. Within this framework, the book predicts the Bose condensation of particles with half-integer spin - the first- ever made in this regard. In closing, a smoking gun criterion to test for this exotic condensate is established.
https://magrudy-assets.storage.googleapis.com/9783319975313.jpg
146.990000 USD

Interplay of Quantum and Statistical Fluctuations in Critical Quantum Matter

by Harley Scammell
Hardback
Book cover image
Thermal processes are ubiquitous and an understanding of thermal phenomena is essential for a complete description of the physics of nanoparticles, both for the purpose of modeling the dynamics of the particles and for the correct interpretation of experimental data. The second edition of this book follows the logic of ...
Statistical Physics of Nanoparticles in the Gas Phase
Thermal processes are ubiquitous and an understanding of thermal phenomena is essential for a complete description of the physics of nanoparticles, both for the purpose of modeling the dynamics of the particles and for the correct interpretation of experimental data. The second edition of this book follows the logic of first edition, with an emphasis on presentation of literature results and to guide the reader through derivations. Several topics have been added to the repertoire, notably magnetism, a fuller exposition of aggregation and the related area of nucleation theory. Also a new chapter has been added on the transient hot electron phenomenon. The book remains focused on the fundamental properties of nanosystems in the gas phase. Each chapter is enriched with additional new exercises and three Appendices provide additional useful material.
https://magrudy-assets.storage.googleapis.com/9783319900612.jpg
167.990000 USD

Statistical Physics of Nanoparticles in the Gas Phase

by Klavs Hansen
Hardback
Book cover image
This book, now in its second edition, introduces readers to quantum rings as a special class of modern high-tech material structures at the nanoscale. It deals, in particular, with their formation by means of molecular beam epitaxy and droplet epitaxy of semiconductors, and their topology-driven electronic, optical and magnetic properties. ...
Physics of Quantum Rings
This book, now in its second edition, introduces readers to quantum rings as a special class of modern high-tech material structures at the nanoscale. It deals, in particular, with their formation by means of molecular beam epitaxy and droplet epitaxy of semiconductors, and their topology-driven electronic, optical and magnetic properties. A highly complex theoretical model is developed to adequately represent the specific features of quantum rings. The results presented here are intended to facilitate the development of low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings. This second edition includes both new and significantly revised chapters. It provides extensive information on recent advances in the physics of quantum rings related to the spin-orbit interaction and spin dynamics (spin interference in Rashba rings, tunable exciton topology on type II InAs/GaAsSb quantum nanostructures), the electron-phonon interaction in ring-like structures, quantum interference manifestations in novel materials (graphene nanoribbons, MoS2), and the effects of electrical field and THz radiation on the optical properties of quantum rings. The new edition also shares insights into the properties of various novel architectures, including coupled quantum ring-quantum dot chains and concentric quantum rings, topologic states of light in self-assembled ring-like cavities, and optical and plasmon m.odes in Moebius-shaped resonators.
https://magrudy-assets.storage.googleapis.com/9783319951584.jpg
188.990000 USD

Physics of Quantum Rings

Hardback
Book cover image
This is a review volume covering a wide range of topics in this newly developed research field. The intended audience corresponds to graduate students, post-docs and colleagues working in the field of cold atomic gases. This is the first review volume dedicated to this active research frontier, and provides a ...
Synthetic Spin-orbit Coupling In Cold Atoms
This is a review volume covering a wide range of topics in this newly developed research field. The intended audience corresponds to graduate students, post-docs and colleagues working in the field of cold atomic gases. This is the first review volume dedicated to this active research frontier, and provides a comprehensive and pedagogical summary of recent progresses in the field.
https://magrudy-assets.storage.googleapis.com/9789813272521.jpg
113.400000 USD

Synthetic Spin-orbit Coupling In Cold Atoms

Hardback
Book cover image
Instantly acquire all the knowledge you need to pass as an expert in the world of quantum physics. Never again confuse a boson with a hadron, a fermion with a meson, or a photon with a lepton or an electron. If in doubt, always fall back on a bluffon. Bask ...
Bluffers Guide To The Quantum Universe
Instantly acquire all the knowledge you need to pass as an expert in the world of quantum physics. Never again confuse a boson with a hadron, a fermion with a meson, or a photon with a lepton or an electron. If in doubt, always fall back on a bluffon. Bask in the admiration of your fellow physicists as you pronounce confidently on the theories of superstrings and entanglement, and hold your own in any discussion about Schroedinger's Cat. And in moments of uncertainty always resort to the tried and tested rejoinder: `They're addressing that at CERN.'
https://magrudy-assets.storage.googleapis.com/9781785215575.jpg
11.93 USD

Bluffers Guide To The Quantum Universe

Paperback / softback
Book cover image
The revised edition of this book offers an extended overview of quantum walks and explains their role in building quantum algorithms, in particular search algorithms. Updated throughout, the book focuses on core topics including Grover's algorithm and the most important quantum walk models, such as the coined, continuous-time, and Szedgedy's ...
Quantum Walks and Search Algorithms
The revised edition of this book offers an extended overview of quantum walks and explains their role in building quantum algorithms, in particular search algorithms. Updated throughout, the book focuses on core topics including Grover's algorithm and the most important quantum walk models, such as the coined, continuous-time, and Szedgedy's quantum walk models. There is a new chapter describing the staggered quantum walk model. The chapter on spatial search algorithms has been rewritten to offer a more comprehensive approach and a new chapter describing the element distinctness algorithm has been added. There is a new appendix on graph theory highlighting the importance of graph theory to quantum walks. As before, the reader will benefit from the pedagogical elements of the book, which include exercises and references to deepen the reader's understanding, and guidelines for the use of computer programs to simulate the evolution of quantum walks. Review of the first edition: The book is nicely written, the concepts are introduced naturally, and many meaningful connections between them are highlighted. The author proposes a series of exercises that help the reader get some working experience with the presented concepts, facilitating a better understanding. Each chapter ends with a discussion of further references, pointing the reader to major results on the topics presented in the respective chapter. - Florin Manea, zbMATH.
https://magrudy-assets.storage.googleapis.com/9783319978123.jpg
167.990000 USD

Quantum Walks and Search Algorithms

by Renato Portugal
Hardback
Book cover image
At a fundamental level, the interaction of quarks with gluon fields lies at the heart of our understanding of the strong nuclear force. Experimentally, however, we only observe physical hadrons such as protons and pions. This book explores the fascinating physics involved in the path between these contrasting pictures of ...
From Quarks To Pions: Chiral Symmetry And Confinement
At a fundamental level, the interaction of quarks with gluon fields lies at the heart of our understanding of the strong nuclear force. Experimentally, however, we only observe physical hadrons such as protons and pions. This book explores the fascinating physics involved in the path between these contrasting pictures of the world. Along the way, the book discusses symmetries, which play a crucial role in understanding the parameters of the theory, and details of the spectrum of physical particles.This would be the first book to elaborate on the detailed connections between confinement and chiral symmetry, with an emphasis on a unified treatment of the non-perturbative nature of these phenomena. As such, it should be a valuable title on any particle theorist's bookshelf, containing extensive pedagogical material for scientists at the graduate level and above.
https://magrudy-assets.storage.googleapis.com/9789813229235.jpg
89.250000 USD

From Quarks To Pions: Chiral Symmetry And Confinement

by Michael Creutz
Hardback
Book cover image
In recent years, the physics community has experienced a revival of interest in spin effects in solid state systems. On one hand, the solid state systems, particularly, semiconductors and semiconductor nanosystems, allow us to perform benchtop studies of quantum and relativistic phenomena. On the other hand, this interest is supported ...
Electron & Nuclear Spin Dynamics in Semiconductor Nanostructures
In recent years, the physics community has experienced a revival of interest in spin effects in solid state systems. On one hand, the solid state systems, particularly, semiconductors and semiconductor nanosystems, allow us to perform benchtop studies of quantum and relativistic phenomena. On the other hand, this interest is supported by the prospects of realizing spin-based electronics, where the electron or nuclear spins may play a role of quantum or classical information carriers. This book looks in detail at the physics of interacting systems of electron and nuclear spins in semiconductors, with particular emphasis on low-dimensional structures. These two spin systems naturally appear in practically all widespread semiconductor compounds. The hyperfine interaction of the charge carriers and nuclear spins is particularly prominent in nanosystems due to the localization of the charge carriers, and gives rise to spin exchange between these two systems and a whole range of beautiful and complex physics of manybody and nonlinear systems. As a result, understanding of the intertwined spin systems of electrons and nuclei is crucial for in-depth studying and controlling the spin phenomena in semiconductors. The book addresses a number of the most prominent effects taking place in semiconductor nanosystems including hyperfine interaction, nuclear magnetic resonance, dynamical nuclear polarization, spin-Faraday and spin-Kerr effects, processes of electron spin decoherence and relaxation, effects of electron spin precession mode-locking and frequency focussing, as well as fluctuations of electron and nuclear spins.
https://magrudy-assets.storage.googleapis.com/9780198807308.jpg
110.91 USD

Electron & Nuclear Spin Dynamics in Semiconductor Nanostructures

by M. M. Glazov
Hardback
Book cover image
This thesis describes significant advances in experimental capabilities using ultracold polar molecules. While ultracold polar molecules are an idyllic platform for quantum chemistry and quantum many-body physics, molecular samples prior to this work failed to be quantum degenerate, were plagued by chemical reactions, and lacked any evidence of many-body physics. ...
Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules
This thesis describes significant advances in experimental capabilities using ultracold polar molecules. While ultracold polar molecules are an idyllic platform for quantum chemistry and quantum many-body physics, molecular samples prior to this work failed to be quantum degenerate, were plagued by chemical reactions, and lacked any evidence of many-body physics. These limitations were overcome by loading molecules into an optical lattice to control and eliminate collisions and hence chemical reactions. This led to observations of many-body spin dynamics using rotational states as a pseudo-spin, and the realization of quantum magnetism with long-range interactions and strong many-body correlations. Further, a 'quantum synthesis' technique based on atomic insulators allowed the author to increase the filling fraction of the molecules in the lattice to 30%, a substantial advance which corresponds to an entropy-per-molecule entering the quantum degenerate regime and surpasses the so-called percolations threshold where long-range spin propagation is expected. Lastly, this work describes the design, construction, testing, and implementation of a novel apparatus for controlling polar molecules. It provides access to: high-resolution molecular detection and addressing; large, versatile static electric fields; and microwave-frequency electric fields for driving rotational transitions with arbitrary polarization. Further, the yield of molecules in this apparatus has been demonstrated to exceed 10^5, which is a substantial improvement beyond the prior apparatus, and an excellent starting condition for direct evaporative cooling to quantum degeneracy.
https://magrudy-assets.storage.googleapis.com/9783319981062.jpg
157.490000 USD

Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules

by Jacob P. Covey
Hardback
Book cover image
This book provides a step-by-step guide on how to construct a narrowband single photon source for the integration with atom-based memory systems. It combines the necessary theoretical background with crucial experimental methods and characterisations to form a complete handbook for readers at all academic levels. The future implementation of large ...
Narrowband Single Photons for Light-Matter Interfaces
This book provides a step-by-step guide on how to construct a narrowband single photon source for the integration with atom-based memory systems. It combines the necessary theoretical background with crucial experimental methods and characterisations to form a complete handbook for readers at all academic levels. The future implementation of large quantum networks will require the hybridisation of photonic qubits for communication with quantum memories in the context of information storage. Such an interface requires carefully tailored single photons to ensure compatibility with the chosen memory. The source itself is remarkable for a number of reasons, including being the spectrally narrowest and brightest source of its kind; in addition, it offers a novel technique for frequency stabilisation in an optical cavity, together with exceptional portability. Starting with a thorough analysis of the current literature, this book derives the essential parameters needed to design the source, describes its individual components in detail, and closes with the characterisation of a single photon source.
https://magrudy-assets.storage.googleapis.com/9783319971537.jpg
146.990000 USD

Narrowband Single Photons for Light-Matter Interfaces

by Markus Rambach
Hardback
Book cover image
This book details groundbreaking experiments for the sensing and imaging of terahertz-frequency electromagnetic radiation (THz) using Rydberg atoms. The major advances described include the development and implementation of a new technique for THz imaging using atomic fluorescence; the demonstration of a THz-driven phase transition in room-temperature atomic vapour; and a ...
Terahertz Wave Detection and Imaging with a Hot Rydberg Vapour
This book details groundbreaking experiments for the sensing and imaging of terahertz-frequency electromagnetic radiation (THz) using Rydberg atoms. The major advances described include the development and implementation of a new technique for THz imaging using atomic fluorescence; the demonstration of a THz-driven phase transition in room-temperature atomic vapour; and a novel method for probing the excited-state dynamics of atoms using quantum beats. The work has formed the basis for several articles published in journals including Nature Photonics and the Physical Review, and has sparked industry interest, becoming the subject of ongoing collaborative research and development. This exceptionally well-written book provides a definitive account of terahertz sensing with Rydberg atoms.
https://magrudy-assets.storage.googleapis.com/9783319949079.jpg
146.990000 USD

Terahertz Wave Detection and Imaging with a Hot Rydberg Vapour

by Christopher Wade
Hardback
Book cover image
In this undergraduate textbook, the author develops the quantum theory from first principles based on very simple experiments: a photon travelling through beam splitters to detectors, an electron moving through a Stern-Gerlach machine, and an atom emitting radiation. From the physical description of these experiments follows a natural mathematical description ...
A First Introduction to Quantum Physics
In this undergraduate textbook, the author develops the quantum theory from first principles based on very simple experiments: a photon travelling through beam splitters to detectors, an electron moving through a Stern-Gerlach machine, and an atom emitting radiation. From the physical description of these experiments follows a natural mathematical description in terms of matrices and complex numbers. The first part of the book examines how experimental facts force us to let go of some deeply held preconceptions and develops this idea into a mathematical description of states, probabilities, observables, and time evolution using physical applications. The second part of the book explores more advanced topics, including the concept of entanglement, the process of decoherence, and extension of the quantum theory to the situation of a particle in a one-dimensional box. Here, the text makes contact with more traditional treatments of quantum mechanics. The remaining chapters delve deeply into the idea of uncertainty relations and explore what the quantum theory says about the nature of reality. The book is an ideal and accessible introduction to quantum physics, with modern examples and helpful end-of-chapter exercises.
https://magrudy-assets.storage.googleapis.com/9783319922065.jpg
57.740000 USD

A First Introduction to Quantum Physics

by Pieter Kok
Paperback
Book cover image
Changes and additions to the new edition of this classic textbook include: new chapter on Symmetries, new problems and examples, improved explanations, more numerical problems to be worked on a computer, new applications to solid state physics, consolidated treatment of time-dependent potentials.
Introduction to Quantum Mechanics
Changes and additions to the new edition of this classic textbook include: new chapter on Symmetries, new problems and examples, improved explanations, more numerical problems to be worked on a computer, new applications to solid state physics, consolidated treatment of time-dependent potentials.
https://magrudy-assets.storage.googleapis.com/9781107189638.jpg
78.740000 USD

Introduction to Quantum Mechanics

by Darrell F. Schroeter, David J. Griffiths
Hardback
Book cover image
From the award-winning, bestselling German science author Stefan Klein An original way into the most thought-provoking scientific theories and ideas, On The Edge of Infinity is the perfect read for those curious about the workings of the universe. * How can a hurricane can reveal the world's unpredictability? How can ...
On the Edge of Infinity: Encounters with the Beauty of the Universe
From the award-winning, bestselling German science author Stefan Klein An original way into the most thought-provoking scientific theories and ideas, On The Edge of Infinity is the perfect read for those curious about the workings of the universe. * How can a hurricane can reveal the world's unpredictability? How can a greying beard might demonstrate the irreversibility of time? How do the exploits of burglars in New York and London demonstrate how everything can be in two places at once? Employing stories about simple everyday items or occurrences as analogies to illuminate counterintuitive realities behind the visible world, On The Edge of Infinity reveals the astonishing beauty of the universe. This book transforms a simple everyday thing such as a rose blossom, or a day of stormy weather, into a key to understanding the most complex ideas and theories in 21st century physics. Stefan Klein unpicks the complexities and intricacies of physics, from the answered questions to the dark corners of what we have yet to discover, making this an accessible read to those with no previous knowledge of the subject.
https://magrudy-assets.storage.googleapis.com/9781788400602.jpg
20.48 USD

On the Edge of Infinity: Encounters with the Beauty of the Universe

by Stefan Klein
Hardback
Book cover image
There are deep and fascinating links between heavy metal and quantum physics. No, really! While teaching at the University of Nottingham, physicist Philip Moriarty noticed something odd, a surprising number of his students were heavily into metal music. Colleagues, too: a Venn diagram of physicists and metal fans would show ...
When the Uncertainty Principle Goes to 11: Or How to Explain Quantum Physics with Heavy Metal
There are deep and fascinating links between heavy metal and quantum physics. No, really! While teaching at the University of Nottingham, physicist Philip Moriarty noticed something odd, a surprising number of his students were heavily into metal music. Colleagues, too: a Venn diagram of physicists and metal fans would show a shocking amount of overlap. What's more, it turns out that heavy metal music is uniquely well-suited to explaining quantum principles. In When the Uncertainty Principle Goes to Eleven, Moriarty explains the mysteries of the universe's inner workings via drum beats and feedback: You'll discover how the Heisenberg uncertainty principle comes into play with every chugging guitar riff, what wave interference has to do with Iron Maiden, and why metalheads in mosh pits behave just like molecules in a gas. If you're a metal fan trying to grasp the complexities of quantum physics, a quantum physicist baffled by heavy metal, or just someone who'd like to know how the fundamental science underpinning our world connects to rock music, this book will take you, in the words of Pantera, to A New Level. For those who think quantum physics is too mind-bendingly complex to grasp, or too focused on the invisibly small to be relevant to our full-sized lives, this funny, fascinating book will show you that physics is all around us . . . and it rocks.
https://magrudy-assets.storage.googleapis.com/9781944648527.jpg
22.17 USD

When the Uncertainty Principle Goes to 11: Or How to Explain Quantum Physics with Heavy Metal

by Philip Moriarty
Paperback / softback
Book cover image
Scattering of light by light is a fundamental process arising at the quantum level through vacuum fluctuations. This short book will explain how, remarkably enough, this quantum process can entirely be described in terms classical quantities. This description is derived from general principles, such as causality, unitarity, Lorentz, and gauge ...
Causality Rules: A Light Treatise on Dispersion Relations and Sum Rules
Scattering of light by light is a fundamental process arising at the quantum level through vacuum fluctuations. This short book will explain how, remarkably enough, this quantum process can entirely be described in terms classical quantities. This description is derived from general principles, such as causality, unitarity, Lorentz, and gauge symmetries. The reader will be introduced into a rigorous formulation of these fundamental concepts, as well as their physical interpretation and applications.
https://magrudy-assets.storage.googleapis.com/9781681749167.jpg
41.950000 USD

Causality Rules: A Light Treatise on Dispersion Relations and Sum Rules

by Vladimir Pascalutsa
Paperback / softback
Book cover image
While there are many good books in particle physics, very seldom if ever a non-specialist comprehensive description of Quantum Field Theory has appeared. The intention of this short book is to offer a guided tour of that innermost topic of Theoretical Physics, in plain words and avoiding the mathematical apparatus, ...
Quantum Field Theory: An Arcane Setting for Explaining the World
While there are many good books in particle physics, very seldom if ever a non-specialist comprehensive description of Quantum Field Theory has appeared. The intention of this short book is to offer a guided tour of that innermost topic of Theoretical Physics, in plain words and avoiding the mathematical apparatus, but still describing its various facets up to the research frontier, with the aim to give a glimpse of what the human mind has been capable of imagining for dealing with the behavior of Nature at the most fundamental level.
https://magrudy-assets.storage.googleapis.com/9781643270500.jpg
36.750000 USD

Quantum Field Theory: An Arcane Setting for Explaining the World

by Roberto Iengo
Paperback / softback
Book cover image
The invention of the semiconductor laser along with silica glass fiber has enabled an incredible revolution in global communication infrastructure of direct benefit to all. Development of devices and system concepts that exploit the same fundamental light-matter interaction continues. Researchers and technologists are pursuing a broad range of emerging applications, ...
Essential Semiconductor Laser Physics
The invention of the semiconductor laser along with silica glass fiber has enabled an incredible revolution in global communication infrastructure of direct benefit to all. Development of devices and system concepts that exploit the same fundamental light-matter interaction continues. Researchers and technologists are pursuing a broad range of emerging applications, everything from automobile collision avoidance to secure quantum key distribution. This book sets out to summarize key aspects of semiconductor laser device physics and principles of laser operation. It provides a convenient reference and essential knowledge to be understood before exploring more sophisticated device concepts. The contents serve as a foundation for scientists and engineers, without the need to invest in specialized detailed study. Supplementary material in the form of MATLAB is available for numerically generated figures.
https://magrudy-assets.storage.googleapis.com/9781643270258.jpg
52.450000 USD

Essential Semiconductor Laser Physics

by A.F.J. Levi
Paperback / softback
Book cover image
Scattering of light by light is a fundamental process arising at the quantum level through vacuum fluctuations. This short book will explain how, remarkably enough, this quantum process can entirely be described in terms classical quantities. This description is derived from general principles, such as causality, unitarity, Lorentz, and gauge ...
Causality Rules: A Light Treatise on Dispersion Relations and Sum Rules
Scattering of light by light is a fundamental process arising at the quantum level through vacuum fluctuations. This short book will explain how, remarkably enough, this quantum process can entirely be described in terms classical quantities. This description is derived from general principles, such as causality, unitarity, Lorentz, and gauge symmetries. The reader will be introduced into a rigorous formulation of these fundamental concepts, as well as their physical interpretation and applications.
https://magrudy-assets.storage.googleapis.com/9781681749204.jpg
62.950000 USD

Causality Rules: A Light Treatise on Dispersion Relations and Sum Rules

by Vladimir Pascalutsa
Hardback
Book cover image
While there are many good books in particle physics, very seldom if ever a non-specialist comprehensive description of Quantum Field Theory has appeared. The intention of this short book is to offer a guided tour of that innermost topic of Theoretical Physics, in plain words and avoiding the mathematical apparatus, ...
Quantum Field Theory: An Arcane Setting for Explaining the World
While there are many good books in particle physics, very seldom if ever a non-specialist comprehensive description of Quantum Field Theory has appeared. The intention of this short book is to offer a guided tour of that innermost topic of Theoretical Physics, in plain words and avoiding the mathematical apparatus, but still describing its various facets up to the research frontier, with the aim to give a glimpse of what the human mind has been capable of imagining for dealing with the behavior of Nature at the most fundamental level.
https://magrudy-assets.storage.googleapis.com/9781643270548.jpg
57.750000 USD

Quantum Field Theory: An Arcane Setting for Explaining the World

by Roberto Iengo
Hardback
Book cover image
The invention of the semiconductor laser along with silica glass fiber has enabled an incredible revolution in global communication infrastructure of direct benefit to all. Development of devices and system concepts that exploit the same fundamental light-matter interaction continues. Researchers and technologists are pursuing a broad range of emerging applications, ...
Essential Semiconductor Laser Physics
The invention of the semiconductor laser along with silica glass fiber has enabled an incredible revolution in global communication infrastructure of direct benefit to all. Development of devices and system concepts that exploit the same fundamental light-matter interaction continues. Researchers and technologists are pursuing a broad range of emerging applications, everything from automobile collision avoidance to secure quantum key distribution. This book sets out to summarize key aspects of semiconductor laser device physics and principles of laser operation. It provides a convenient reference and essential knowledge to be understood before exploring more sophisticated device concepts. The contents serve as a foundation for scientists and engineers, without the need to invest in specialized detailed study. Supplementary material in the form of MATLAB is available for numerically generated figures.
https://magrudy-assets.storage.googleapis.com/9781643270296.jpg
73.450000 USD

Essential Semiconductor Laser Physics

by A.F.J. Levi
Hardback
Book cover image
Quantum physics may appear complicated, especially if one forgets the big picture and gets lost in the details. However, it can become clearer and less tangled if one applies a few fundamental concepts so that simplified approaches can emerge and estimated orders of magnitude become clear. Povh and Rosina's Scattering ...
Scattering and Structures: Essentials and Analogies in Quantum Physics
Quantum physics may appear complicated, especially if one forgets the big picture and gets lost in the details. However, it can become clearer and less tangled if one applies a few fundamental concepts so that simplified approaches can emerge and estimated orders of magnitude become clear. Povh and Rosina's Scattering and Structures presents the properties of quantum systems (elementary particles, nucleons, atoms, molecules, quantum gases, quantum liquids, stars, and early universe) with the help of elementary concepts and analogies between these seemingly different systems. In this new edition, sections on quantum gases and an up to date overview of elementary particles have been added.
https://magrudy-assets.storage.googleapis.com/9783662572023.jpg
73.490000 USD

Scattering and Structures: Essentials and Analogies in Quantum Physics

by Mitja Rosina, Bogdan Povh
Paperback / softback
Book cover image
This thesis focuses on the theoretical foundation of the Standard Model valid up to the Planck scale, based on the current experimental facts from the Large Hadron Collider. The thesis consists of two themes: (1) to open up a new window of the Higgs inflation scenario, and (2) to explore ...
Higgs Potential and Naturalness After the Higgs Discovery
This thesis focuses on the theoretical foundation of the Standard Model valid up to the Planck scale, based on the current experimental facts from the Large Hadron Collider. The thesis consists of two themes: (1) to open up a new window of the Higgs inflation scenario, and (2) to explore a new solution to the naturalness problem in particle physics. In the first area, on the Higgs inflation scenario, the author successfully improves a large value problem on a coupling constant relevant to the Higgs mass in the Standard Model, in which the coupling value of the order of 105 predicted in a conventional scenario is reduced to the order of 10. This result makes the Higgs inflation more attractive because the small value of coupling is natural in the context of ultraviolet completion such as string theory. In the second area, the author provides a new answer to the naturalness problem, of why the cosmological constant and the Higgs mass are extremely small compared with the Planck scale. Based on the baby universe theory originally proposed by Coleman, the smallness of those quantities is successfully explained without introducing any additional new particles relevant at the TeV energy scale.
https://magrudy-assets.storage.googleapis.com/9789811098680.jpg
125.990000 USD

Higgs Potential and Naturalness After the Higgs Discovery

by Yuta Hamada
Paperback / softback
Book cover image
This book includes topics in nanophysics, nanotechnology, nanomaterials, sensors, biosensors, security systems, and CBRN agents detection. There have been many significant advances in the past two years and some entirely new directions of research are just opening up. Recent developments in nanotechnology and measurement techniques now allow experimental investigation of ...
Nanostructured Materials for the Detection of CBRN
This book includes topics in nanophysics, nanotechnology, nanomaterials, sensors, biosensors, security systems, and CBRN agents detection. There have been many significant advances in the past two years and some entirely new directions of research are just opening up. Recent developments in nanotechnology and measurement techniques now allow experimental investigation of the physical properties of nanostructured materials. The book presents new methods for the detection of chemical, biological, radiological and nuclear (CBRN) agents using chemical and biochemical sensors. Identification, protection and decontamination are the main scientific and technological responses for the modern challenges of CBRN agents.
https://magrudy-assets.storage.googleapis.com/9789402413069.jpg
178.490000 USD

Nanostructured Materials for the Detection of CBRN

Paperback / softback
Book cover image
This thesis presents the first measurement of charmed D0 meson production relative to the reaction plane in Pb-Pb collisions at the center-of-mass energy per nucleon-nucleon collision of sNN = 2.76 TeV. It also showcases the measurement of the D0 production in p-Pb collisions at sNN = 5.02 TeV with the ...
Measurement of the D0 Meson Production in Pb-Pb and p-Pb Collisions: A Study Performed with the ALICE Experiment at the LHC
This thesis presents the first measurement of charmed D0 meson production relative to the reaction plane in Pb-Pb collisions at the center-of-mass energy per nucleon-nucleon collision of sNN = 2.76 TeV. It also showcases the measurement of the D0 production in p-Pb collisions at sNN = 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement of the D0 azimuthal anisotropy with respect to the reaction plane indicates that low- momentum charm quarks participate in the collective expansion of the high-density, strongly interacting medium formed in ultra-relativistic heavy-ion collisions, despite their large mass. This behavior can be explained by charm hadronization via recombination with light quarks from the medium and collisional energy loss. The measurement of the D0 production in p-Pb collisions is crucial to separate the effect induced by cold nuclear matter from the final- state effects induced by the hot medium formed in Pb-Pb collisions. The D0 production in p-Pb collisions is consistent with the binary collision scaling of the production in pp collisions, demonstrating that the modification of the momentum distribution observed in Pb-Pb collisions with respect to pp is predominantly induced by final-state effects such as the charm energy loss.
https://magrudy-assets.storage.googleapis.com/9783319828299.jpg
125.990000 USD

Measurement of the D0 Meson Production in Pb-Pb and p-Pb Collisions: A Study Performed with the ALICE Experiment at the LHC

by Andrea Festanti
Paperback / softback
Book cover image
In 1941, E.C.G. Stueckelberg wrote a paper, based on ideas of V. Fock, that established the foundations of a theory that could covariantly describe the classical and quantum relativistic mechanics of a single particle. Horwitz and Piron extended the applicability of this theory in 1973 (to be called the SHP ...
Relativistic Many-Body Theory and Statistical Mechanics
In 1941, E.C.G. Stueckelberg wrote a paper, based on ideas of V. Fock, that established the foundations of a theory that could covariantly describe the classical and quantum relativistic mechanics of a single particle. Horwitz and Piron extended the applicability of this theory in 1973 (to be called the SHP theory) to the many-body problem. It is the purpose of this book to explain this development and provide examples of its applications. We first review the basic ideas of the SHP theory, both classical and quantum, and develop the appropriate form of electromagnetism on this dynamics. After studying the two body problem classically and quantum mechanically, we formulate the N-body problem. We then develop the general quantum scattering theory for the N-body problem and prove a quantum mechanical relativistically covariant form of the Gell-Mann-Low theorem. The quantum theory of relativistic spin is then developed, including spin-statistics, providing the necessary apparatus for Clebsch-Gordan additivity, and we then discuss the phenomenon of entanglement at unequal times. In the second part, we develop relativistic statistical mechanics, including a mechanism for stability of the off-shell mass, and a high temperature phase transition to the mass shell. Finally, some applications are given, such as the explanation of the Lindneret alexperiment, the proposed experiment of Palacios et al which should demonstrate relativistic entanglement (at unequal times), the space-time lattice, low energy nuclear reactions and applications to black hole physics.
https://magrudy-assets.storage.googleapis.com/9781681749457.jpg
62.950000 USD

Relativistic Many-Body Theory and Statistical Mechanics

by Rafael I Arshansky, Lawrence P Horwitz
Paperback / softback
Book cover image
In 1941, E.C.G. Stueckelberg wrote a paper, based on ideas of V. Fock, that established the foundations of a theory that could covariantly describe the classical and quantum relativistic mechanics of a single particle. Horwitz and Piron extended the applicability of this theory in 1973 (to be called the SHP ...
Relativistic Many-Body Theory and Statistical Mechanics
In 1941, E.C.G. Stueckelberg wrote a paper, based on ideas of V. Fock, that established the foundations of a theory that could covariantly describe the classical and quantum relativistic mechanics of a single particle. Horwitz and Piron extended the applicability of this theory in 1973 (to be called the SHP theory) to the many-body problem. It is the purpose of this book to explain this development and provide examples of its applications. We first review the basic ideas of the SHP theory, both classical and quantum, and develop the appropriate form of electromagnetism on this dynamics. After studying the two body problem classically and quantum mechanically, we formulate the N-body problem. We then develop the general quantum scattering theory for the N-body problem and prove a quantum mechanical relativistically covariant form of the Gell-Mann-Low theorem. The quantum theory of relativistic spin is then developed, including spin-statistics, providing the necessary apparatus for Clebsch-Gordan additivity, and we then discuss the phenomenon of entanglement at unequal times. In the second part, we develop relativistic statistical mechanics, including a mechanism for stability of the off-shell mass, and a high temperature phase transition to the mass shell. Finally, some applications are given, such as the explanation of the Lindneret alexperiment, the proposed experiment of Palacios et al which should demonstrate relativistic entanglement (at unequal times), the space-time lattice, low energy nuclear reactions and applications to black hole physics.
https://magrudy-assets.storage.googleapis.com/9781681749495.jpg
83.950000 USD

Relativistic Many-Body Theory and Statistical Mechanics

by Rafael I Arshansky, Lawrence P Horwitz
Hardback
Book cover image
This thesis studies collider phenomenology of physics beyond the Standard Model at the Large Hadron Collider (LHC). It also explores in detail advanced topics related to Higgs boson and supersymmetry - one of the most exciting and well-motivated streams in particle physics. In particular, it finds a very large enhancement ...
Beyond Standard Model Collider Phenomenology of Higgs Physics and Supersymmetry
This thesis studies collider phenomenology of physics beyond the Standard Model at the Large Hadron Collider (LHC). It also explores in detail advanced topics related to Higgs boson and supersymmetry - one of the most exciting and well-motivated streams in particle physics. In particular, it finds a very large enhancement of multiple Higgs boson production in vector-boson scattering when Higgs couplings to gauge bosons differ from those predicted by the Standard Model. The thesis demonstrates that due to the loss of unitarity, the very large enhancement for triple Higgs boson production takes place. This is a truly novel finding. The thesis also studies the effects of supersymmetric partners of top and bottom quarks on the Higgs production and decay at the LHC, pointing for the first time to non-universal alterations for two main production processes of the Higgs boson at the LHC-vector boson fusion and gluon-gluon fusion. Continuing the exploration of Higgs boson and supersymmetry at the LHC, the thesis extends existing experimental analysis and shows that for a single decay channel the mass of the top quark superpartner below 175 GeV can be completely excluded, which in turn excludes electroweak baryogenesis in the Minimal Supersymmetric Model. This is a major new finding for the HEP community. This thesis is very clearly written and the introduction and conclusions are accessible to a wide spectrum of readers.
https://magrudy-assets.storage.googleapis.com/9783319828282.jpg
146.990000 USD

Beyond Standard Model Collider Phenomenology of Higgs Physics and Supersymmetry

by Marc Christopher Thomas
Paperback / softback
Page 1 of 40