Filter
(found 7627 products)
Book cover image
The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. ...
An Introduction to Plasma Physics and Its Space Applications, Volume 1: Fundamentals and Elementary Processes
The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.
https://magrudy-assets.storage.googleapis.com/9781643271712.jpg
58.750000 USD

An Introduction to Plasma Physics and Its Space Applications, Volume 1: Fundamentals and Elementary Processes

by Luis Conde
Paperback / softback
Book cover image
In the present work, the target station of the accelerator-driven neutron source HBS is optimized in comprehensive parameter studies using the Monto-Carlo method. The dependence of the most important performance characteristics of such a system on the external parameters is investigated neglecting technical and mechanical limitations. In this way, qualitative ...
Target Station Optimization for the High-Brilliance Neutron Source HBS: Simulation Studies Based on the Monte Carlo Method
In the present work, the target station of the accelerator-driven neutron source HBS is optimized in comprehensive parameter studies using the Monto-Carlo method. The dependence of the most important performance characteristics of such a system on the external parameters is investigated neglecting technical and mechanical limitations. In this way, qualitative and quantitative statements for all possible configurations and envisaged applications can be derived and should be considered in the detailed planning of such facilities. For this purpose, different scenarios are considered that place completely different requirements on the design of the target station. The central statements derived in this thesis can be transferred to any framework conditions, such as different accelerator energies, so that these results can be used in the development of other neutron sources, which together with the HBS form a European network and provide a prosperous community in neutron science.
https://magrudy-assets.storage.googleapis.com/9783030056384.jpg
157.490000 USD

Target Station Optimization for the High-Brilliance Neutron Source HBS: Simulation Studies Based on the Monte Carlo Method

by Jan Philipp Dabruck
Hardback
Book cover image
This thesis focuses on one of the mechanisms for solving the baryon asymmetry of the Universe (BAU) which is a long-standing open question in both particle physics and cosmophysics. Electroweak baryogenesis (EWBG) is one attractive hypothetical scenario to solve this mystery because it can be verified by collider experiments. The ...
Electroweak Baryogenesis and Its Phenomenology
This thesis focuses on one of the mechanisms for solving the baryon asymmetry of the Universe (BAU) which is a long-standing open question in both particle physics and cosmophysics. Electroweak baryogenesis (EWBG) is one attractive hypothetical scenario to solve this mystery because it can be verified by collider experiments. The author aims to clarify the possibility of EWBG, and to show its verifiability using the Higgs physics and electric dipole moments (EDMs) of an electron, neutron, and proton. The thesis begins with a review of the BAU and EWBG. Subsequently, the possibility of EWBG in one effective model is discussed, which can be applied to some motivated physics beyond the Standard Model. Numerical analyses of electroweak phase transition and sphaleron solution are presented, and the closed time path formalism is also explained to estimate the BAU. After essential calculations for investigation of the possibility of EWBG, the relationship between the BAU and EDMs is described. Through the discussion of the result, it is concluded that both EDMs and the Higgs physics verify the scenario completely. The whole discussion in this thesis causes us to accept the current situation that is ripe for verification of EWBG.
https://magrudy-assets.storage.googleapis.com/9789811310072.jpg
170.61 USD

Electroweak Baryogenesis and Its Phenomenology

by Kaori Fuyuto
Hardback
Book cover image
This book introduces two-dimensional supersymmetric field theories with emphasis on both linear and non-linear sigma models. Complex differential geometry, in connection with supersymmetry, has played a key role in most developments of the last thirty years in quantum field theory and string theory. Both structures introduce a great deal of ...
An Introduction to Two-Dimensional Quantum Field Theory with (0,2) Supersymmetry
This book introduces two-dimensional supersymmetric field theories with emphasis on both linear and non-linear sigma models. Complex differential geometry, in connection with supersymmetry, has played a key role in most developments of the last thirty years in quantum field theory and string theory. Both structures introduce a great deal of rigidity compared to the more general categories of non-supersymmetric theories and real differential geometry, allowing for many general conceptual results and detailed quantitative predictions. Two-dimensional (0,2) supersymmetric quantum field theories provide a natural arena for the fruitful interplay between geometry and quantum field theory. These theories play an important role in string theory and provide generalizations, still to be explored fully, of rich structures such as mirror symmetry. They also have applications to non-perturbative four-dimensional physics, for instance as descriptions of surface defects or low energy dynamics of solitonic strings in four-dimensional supersymmetric theories. The purpose of these lecture notes is to acquaint the reader with these fascinating theories, assuming a background in conformal theory, quantum field theory and differential geometry at the beginning graduate level. In order to investigate the profound relations between structures from complex geometry and field theory the text begins with a thorough examination of the basic structures of (0,2) quantum field theory and conformal field theory. Next, a simple class of Lagrangian theories, the (0,2) Landau-Ginzburg models, are discussed, together with the resulting renormalization group flows, dynamics, and symmetries. After a thorough introduction and examination of (0,2) non-linear sigma models, the text introduces linear sigma models that, in particular, provide a unified treatment of non-linear sigma models and Landau-Ginzburg theories. Many exercises, along with discussions of relevant mathematical notions and important open problems in the field, are included in the text.
https://magrudy-assets.storage.googleapis.com/9783030050832.jpg
78.740000 USD

An Introduction to Two-Dimensional Quantum Field Theory with (0,2) Supersymmetry

by Ilarion V. Melnikov
Paperback / softback
Book cover image
Turbulence in plasma surface interaction holds crucial uncertainties for its impact on material erosion in the operation of fusion reactors. In this thesis, the design, development and operation of a Thomson scattering diagnostic and its novel implementation with fast visual imaging created a versatile tool to investigate intermittently occuring plasma ...
The Dynamics of Electrons in Linear Plasma Devices and Its Impact on Plasma Surface Interaction
Turbulence in plasma surface interaction holds crucial uncertainties for its impact on material erosion in the operation of fusion reactors. In this thesis, the design, development and operation of a Thomson scattering diagnostic and its novel implementation with fast visual imaging created a versatile tool to investigate intermittently occuring plasma oscillations. Specifically, ballistic transport events in the plasma edge, constituting turbulent transport, have been targeted in this thesis. With the help of a custom photon counting algorithm, the conditional averaging technique was applied on Thomson scattering for the first time to allow spatial and pseudo-time-resolved measurements. Since plasma turbulence and the emerging transport phenomena are comparable in most magnetized devices, the diagnostic development and the results from the linear plasma device PSI-2 are useful for an implementation of similar techniques in larger fusion experiments. Furthermore, the obtained results indicate a strong enhancement of erosion with turbulent transport and thus underline the importance of dedicated experiments investigating plasma turbulence in the framework of erosion in future fusion reactors.
https://magrudy-assets.storage.googleapis.com/9783030125356.jpg
167.990000 USD

The Dynamics of Electrons in Linear Plasma Devices and Its Impact on Plasma Surface Interaction

by Michael Hubeny
Hardback
Book cover image
The main focus of this book is on the contribution of Welsh scientists, engineers and facilities in Wales to the British nuclear programme - especially the military programme - from the Second World War through to the present day. After the war, a number of Welsh scientists at Harwell played ...
Wales and the Bomb: The Role of Welsh Scientists and Engineers in the UK Nuclear Programme
The main focus of this book is on the contribution of Welsh scientists, engineers and facilities in Wales to the British nuclear programme - especially the military programme - from the Second World War through to the present day. After the war, a number of Welsh scientists at Harwell played an important role in the development of civil nuclear power, and subsequently also at Aldermaston where Welsh scientists and engineers were a key part of William Penney's team producing the first UK nuclear device tested at Monte Bello in 1952. This book highlights the scientific and engineering contribution made by Welsh scientists and engineers, and, where possible, it considers their backgrounds, education, personalities and interests. Many, for example, were sons of miners from the Welsh valleys, whose lives were changed by their teachers and education at Wales's university institutions - which responds in part to the question, `Why so many Welshmen?'
https://magrudy-assets.storage.googleapis.com/9781786833594.jpg
25.200000 USD

Wales and the Bomb: The Role of Welsh Scientists and Engineers in the UK Nuclear Programme

by John Baylis
Paperback / softback
Book cover image
This book offers a review of the use of extended ablation plasmas as nonlinear media for HHG of high-order harmonic generation (HHG). The book describes the different experimental approaches, shows the advantages and limitations regarding HHG efficiency and discusses the particular processes that take place at longer interaction lengths, including ...
Frequency Conversion of Ultrashort Pulses in Extended Laser-Produced Plasmas
This book offers a review of the use of extended ablation plasmas as nonlinear media for HHG of high-order harmonic generation (HHG). The book describes the different experimental approaches, shows the advantages and limitations regarding HHG efficiency and discusses the particular processes that take place at longer interaction lengths, including propagation and quasi-phase matching effects. It describes the most recent approaches to harmonic generation in the extreme ultraviolet (XUV) range with the use of extended plasma plumes, and how these differ from more commonly-used gas-jet sources. The main focus is on studies using extended plasmas, but some new findings from HHG experiments in narrow plasma plumes are also discussed. It also describes how quasi-phase-matching in modulated plasmas, as demonstrated in recent studies, has revealed different means of tuning enhanced harmonic groups in the XUV region. After an introduction to the fundamental theoretical and experimental aspects of HHG, a review of the most important results of HHG in narrow plasmas is presented, including recent studies of small-sized plasma plumes as emitters of high-order harmonics. In Chapter 2, various findings in the application of extended plasmas for harmonic generation are analyzed. One of the most important applications of extended plasmas, the quasi-phase-matching of generated harmonics, is demonstrated in Chapter 3, including various approaches to the modification of perforated plasma plumes. Chapter 4 depicts the nonlinear optical features of extended plasmas produced on the surfaces of different non-metal materials. Chapter 5 is dedicated to the analysis of new opportunities for extended plasma induced HHG. The advantages of the application of long plasma plumes for HHG, such as resonance enhancement and double-pulse method, are discussed in Chapter 6. Finally, a summary section brings together all of these findings and discuss the perspectives of extended plasma formations for efficient HHG and nonlinear optical plasma spectroscopy. The book will be useful for students and scholars working in this highly multidisciplinary domain involving material science, nonlinear optics and laser spectroscopy. It brings the new researcher to the very frontier of the physics of the interaction between laser and extended plasma; for the expert it will serve as an essential guide and indicate directions for future research.
https://magrudy-assets.storage.googleapis.com/9789811091001.jpg
157.490000 USD

Frequency Conversion of Ultrashort Pulses in Extended Laser-Produced Plasmas

by Rashid A. Ganeev
Paperback / softback
Book cover image
This book, designed as a tool for young researchers and graduate students, reviews the main open problems and research lines in various fields of astroparticle physics: cosmic rays, gamma rays, neutrinos, cosmology, and gravitational physics. The opening section discusses cosmic rays of both galactic and extragalactic origin, examining experimental results, ...
Multiple Messengers and Challenges in Astroparticle Physics
This book, designed as a tool for young researchers and graduate students, reviews the main open problems and research lines in various fields of astroparticle physics: cosmic rays, gamma rays, neutrinos, cosmology, and gravitational physics. The opening section discusses cosmic rays of both galactic and extragalactic origin, examining experimental results, theoretical models, and possible future developments. The basics of gamma-ray astronomy are then described, including the detection methods and techniques. Galactic and extragalactic aspects of the field are addressed in the light of recent discoveries with space-borne and ground-based detectors. The review of neutrinos outlines the status of the investigations of neutrino radiation and brings together relevant formulae, estimations, and background information. Three complementary issues in cosmology are examined: observable predictions of inflation in the early universe, effects of dark energy/modified gravity in the large-scale structure of the universe, and neutrinos in cosmology and large-scale structures. The closing section on gravitational physics reviews issues relating to quantum gravity, atomic precision tests, space-based experiments, the strong field regime, gravitational waves, multi-messengers, and alternative theories of gravity.
https://magrudy-assets.storage.googleapis.com/9783030097394.jpg
240.450000 USD

Multiple Messengers and Challenges in Astroparticle Physics

Paperback / softback
Book cover image
The author is ready to assert that practically none of the readers of this book will ever happen to deal with large doses of radiation. But the author without a shadow of a doubt claims that any readers of this book, regardless of gender, age, financial situation, type of professional ...
Radiation: Fundamentals, Applications, Risks, and Safety
The author is ready to assert that practically none of the readers of this book will ever happen to deal with large doses of radiation. But the author without a shadow of a doubt claims that any readers of this book, regardless of gender, age, financial situation, type of professional activity, and habits are actually exposed to low doses of radiation throughout their life. This book is devoted to the effect of small doses on the body. To understand the basic effects of radiation on humans, the book contains the necessary information from an atomic, molecular and nuclear physics, as well as from biochemistry and biology. Special attention is paid to the issues that are either not considered or discussed very briefly in existing literature. Examples include the ionization of inner atomic shells that play an essential role in radiological processes, and the questions of transformation of the energy of ionizing radiation in matter. The benefits of ionizing radiation to mankind is reflected in a wide range of radiation technologies used in science, industry, agriculture, culture, art, forensics, and, what is the most important application, medicine. Radiation: Fundamentals, Applications, Risks and Safety provides information on the use of radiation in modern life, its usefulness and indispensability. Experiments on the effects of small doses on bacteria, fungi, algae, insects, plants and animals are described. Human medical experiments are inhuman and ethically flawed. However, during the familiarity of mankind with ionizing radiation, a large number of population groups were subject to accumulation, exposed to radiation at doses of small but exceeding the natural background radiation. This book analyzes existing, real-life radiation results from survivors of Hiroshima and Nagasaki, Chernobyl and Fukushima, and examines studies of radiation effect on patients, radiologists, crews of long-distant flights and astronauts, on miners of uranium copies, on workers of nuclear industry and on militaries, exposed to ionizing radiation on a professional basis, and on the population of the various countries receiving environmental exposure. The author hopes that this book can mitigate the impact of radiation phobia, that prevails in the public consciousness last half century.
https://magrudy-assets.storage.googleapis.com/9780444639790.jpg
262.500000 USD

Radiation: Fundamentals, Applications, Risks, and Safety

by Ilya Obodovskiy
Paperback / softback
Book cover image
'Remarkable . . . grips with the force of a thriller' Robert MacFarlane An astonishing expose of the aftermath of Chernobyl - and the plot to cover up the truth The official death toll of the 1986 Chernobyl accident, 'the worst nuclear disaster in history', is only 54, and stories ...
Manual for Survival: A Chernobyl Guide to the Future
'Remarkable . . . grips with the force of a thriller' Robert MacFarlane An astonishing expose of the aftermath of Chernobyl - and the plot to cover up the truth The official death toll of the 1986 Chernobyl accident, 'the worst nuclear disaster in history', is only 54, and stories today commonly suggest that nature is thriving there. Yet award-winning historian Kate Brown uncovers a much more disturbing story, one in which radioactive isotopes caused hundreds of thousands of casualties, and the magnitude of this human and ecological catastrophe has been actively suppressed. Based on a decade of archival and on-the-ground research, Manual for Survival is a gripping account of the consequences of nuclear radiation in the wake of Chernobyl - and the plot to cover it up. As Brown discovers, Soviet scientists, bureaucrats, and civilians documented staggering increases in cases of birth defects, child mortality, cancers and a multitude of life-altering diseases years after the disaster. Worried that this evidence would blow the lid on the effects of massive radiation release from weapons-testing during the Cold War, scientists and diplomats from international organizations, including the UN, tried to bury or discredit it. Yet Brown also encounters many everyday heroes, often women, who fought to bring attention to the ballooning health catastrophe, and adapt to life in a post-nuclear landscape, where dangerously radioactive radioactive berries, distorted trees and birth defects still persist today. An astonishing historical detective story, Manual for Survival makes clear the irreversible impact of nuclear energy on every living thing, not just from Chernobyl, but from eight decades of radiaoactive fallout from weapons development.
https://magrudy-assets.storage.googleapis.com/9780241352069.jpg
34.12 USD

Manual for Survival: A Chernobyl Guide to the Future

by Kate Brown
Hardback
Book cover image
The development of atomic bombs under the auspices of the U.S. Army's Manhattan Project during World War II is considered to be the outstanding news story of the twentieth century. In this book, a physicist and expert on the history of the Project presents a comprehensive overview of this momentous ...
The History and Science of the Manhattan Project
The development of atomic bombs under the auspices of the U.S. Army's Manhattan Project during World War II is considered to be the outstanding news story of the twentieth century. In this book, a physicist and expert on the history of the Project presents a comprehensive overview of this momentous achievement. The first three chapters cover the history of nuclear physics from the discovery of radioactivity to the discovery of fission, and would be ideal for instructors of a sophomore-level Modern Physics course. Student-level exercises at the ends of the chapters are accompanied by answers. Chapter 7 covers the physics of first-generation fission weapons at a similar level, again accompanied by exercises and answers. For the interested layman and for non-science students and instructors, the book includes extensive qualitative material on the history, organization, implementation, and results of the Manhattan Project and the Hiroshima and Nagasaki bombing missions. The reader also learns about the legacy of the Project as reflected in the current world stockpiles of nuclear weapons. This second edition contains important revisions and additions, including a new chapter on the German atomic bomb program and new sections on British and Canadian contributions to the Manhattan project and on feed materials. Several other sections have been expanded; reader feedback has been helpful in introducing minor corrections and improved explanations; and, last but not least, the second edition includes a detailed index.
https://magrudy-assets.storage.googleapis.com/9783662581742.jpg
94.490000 USD

The History and Science of the Manhattan Project

by Bruce Cameron Reed
Hardback
Book cover image
This book summarizes the recent progress in the physics and astrophysics of neutron stars and, most importantly, it identifies and develops effective strategies to explore, both theoretically and observationally, the many remaining open questions in the field. Because of its significance in the solution of many fundamental questions in nuclear ...
The Physics and Astrophysics of Neutron Stars
This book summarizes the recent progress in the physics and astrophysics of neutron stars and, most importantly, it identifies and develops effective strategies to explore, both theoretically and observationally, the many remaining open questions in the field. Because of its significance in the solution of many fundamental questions in nuclear physics, astrophysics and gravitational physics, the study of neutron stars has seen enormous progress over the last years and has been very successful in improving our understanding in these fascinating compact objects. The book addresses a wide spectrum of readers, from students to senior researchers. Thirteen chapters written by internationally renowned experts offer a thorough overview of the various facets of this interdisciplinary science, from neutron star formation in supernovae, pulsars, equations of state super dense matter, gravitational wave emission, to alternative theories of gravity. The book was initiated by the European Cooperation in Science and Technology (COST) Action MP1304 Exploring fundamental physics with compact stars (NewCompStar).
https://magrudy-assets.storage.googleapis.com/9783319976150.jpg
221.80 USD

The Physics and Astrophysics of Neutron Stars

Hardback
Book cover image
What is spectral action, how to compute it and what are the known examples? This book offers a guided tour through the mathematical habitat of noncommutative geometry a la Connes, deliberately unveiling the answers to these questions. After a brief preface flashing the panorama of the spectral approach, a concise ...
Spectral Action in Noncommutative Geometry
What is spectral action, how to compute it and what are the known examples? This book offers a guided tour through the mathematical habitat of noncommutative geometry a la Connes, deliberately unveiling the answers to these questions. After a brief preface flashing the panorama of the spectral approach, a concise primer on spectral triples is given. Chapter 2 is designed to serve as a toolkit for computations. The third chapter offers an in-depth view into the subtle links between the asymptotic expansions of traces of heat operators and meromorphic extensions of the associated spectral zeta functions. Chapter 4 studies the behaviour of the spectral action under fluctuations by gauge potentials. A subjective list of open problems in the field is spelled out in the fifth Chapter. The book concludes with an appendix including some auxiliary tools from geometry and analysis, along with examples of spectral geometries. The book serves both as a compendium for researchers in the domain of noncommutative geometry and an invitation to mathematical physicists looking for new concepts.
https://magrudy-assets.storage.googleapis.com/9783319947877.jpg
73.490000 USD

Spectral Action in Noncommutative Geometry

by Bruno Iochum, Michal Eckstein
Paperback / softback
Book cover image
This book presents the survismeter, a new invention that widely covers and determines PCPs of various molecules and experimentally measures the thermodynamic and kinetic stabilities of nanoemulsions. It unveils how a survismeter can measure surface tension, interfacial tension, wettability, viscosity, friccohesity, tentropy, rheology, density, activation energy, and particle size. It ...
Survismeter: Fundamentals, Devices, and Applications
This book presents the survismeter, a new invention that widely covers and determines PCPs of various molecules and experimentally measures the thermodynamic and kinetic stabilities of nanoemulsions. It unveils how a survismeter can measure surface tension, interfacial tension, wettability, viscosity, friccohesity, tentropy, rheology, density, activation energy, and particle size. It discusses novel models of molecular science that can be applied in the formulation and study of activities of functional molecules through their PCPs. It also introduces the new concept of friccohesity, which has emerged as an excellent substitute of viscosity and surface tension in experimental measurements as it does not require density measurements. It shows that the science and technology of the survismeter and friccohesity have become an inevitable part of scientific research, substantially integrating the domain of perfect industrial and academic formulations.
https://magrudy-assets.storage.googleapis.com/9789814774703.jpg
197.92 USD

Survismeter: Fundamentals, Devices, and Applications

Hardback
Book cover image
Quantum Systems in Physics, Chemistry and Biology, Theory, Interpretation, and Results, Volume 78, the latest release in the Advances in Quantum Chemistry series presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and ...
Quantum Systems in Physics, Chemistry and Biology - Theory, Interpretation and Results: Volume 78
Quantum Systems in Physics, Chemistry and Biology, Theory, Interpretation, and Results, Volume 78, the latest release in the Advances in Quantum Chemistry series presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology. It features detailed reviews written by leading international researchers.
https://magrudy-assets.storage.googleapis.com/9780128160848.jpg
257.250000 USD

Quantum Systems in Physics, Chemistry and Biology - Theory, Interpretation and Results: Volume 78

Hardback
Book cover image
Our understanding of subatomic particles developed over many years, although a clear picture of the different particles, their interactions and their inter-relationships only emerged in the latter part of the twentieth century. The first subatomic particles to be investigated were those which exhibit readily observable macroscopic behavior, specifically these are ...
Particle Physics
Our understanding of subatomic particles developed over many years, although a clear picture of the different particles, their interactions and their inter-relationships only emerged in the latter part of the twentieth century. The first subatomic particles to be investigated were those which exhibit readily observable macroscopic behavior, specifically these are the photon, which we observe as light and the electron, which is manifested as electricity. The true nature of these particles, however, only became clear within the last century or so. The development of the Standard Model provided clarification of the way in which various particles, specifically the hadrons, relate to one another and the way in which their properties are determined by their structure. The final piece, perhaps, of the final model, that is the means by which some particles acquire mass, has just recently been clarified with the observation of the Higgs boson. Since the 1970s it has been known that the measured solar neutrino flux was inconsistent with the flux predicted by solar models. The existence of neutrinos with mass would allow for neutrino flavor oscillations and would provide an explanation for this discrepancy. Only in the past few years, has there been clear experimental evidence that neutrinos have mass. The description of particle structure on the basis of the Standard Model, along with recent discoveries concerning neutrino properties, provides us with a comprehensive picture of the properties of subatomic particles. Part I of the present book provides an overview of the Standard Model of particle physics including an overview of the discovery and properties of the Higgs boson. Part II of the book summarizes the important investigations into the physics of neutrinos and provides an overview of the interpretation of these studies.
https://magrudy-assets.storage.googleapis.com/9781643273594.jpg
52.450000 USD

Particle Physics

by Richard A Dunlap
Paperback / softback
Book cover image
This book explores how machine learning can be used to improve the efficiency of expensive fundamental science experiments. The first part introduces the Belle and Belle II experiments, providing a detailed description of the Belle to Belle II data conversion tool, currently used by many analysts. The second part covers ...
Machine Learning at the Belle II Experiment: The Full Event Interpretation and Its Validation on Belle Data
This book explores how machine learning can be used to improve the efficiency of expensive fundamental science experiments. The first part introduces the Belle and Belle II experiments, providing a detailed description of the Belle to Belle II data conversion tool, currently used by many analysts. The second part covers machine learning in high-energy physics, discussing the Belle II machine learning infrastructure and selected algorithms in detail. Furthermore, it examines several machine learning techniques that can be used to control and reduce systematic uncertainties. The third part investigates the important exclusive B tagging technique, unique to physics experiments operating at the resonances, and studies in-depth the novel Full Event Interpretation algorithm, which doubles the maximum tag-side efficiency of its predecessor. The fourth part presents a complete measurement of the branching fraction of the rare leptonic B decay B tau nu , which is used to validate the algorithms discussed in previous parts.
https://magrudy-assets.storage.googleapis.com/9783319982489.jpg
146.990000 USD

Machine Learning at the Belle II Experiment: The Full Event Interpretation and Its Validation on Belle Data

by Thomas Keck
Hardback
Book cover image
This expanded new edition develops the theory of nuclear reactors from the fundamentals of fission to the operating characteristics of modern reactors. The first half of the book emphasizes reactor criticality analysis and all of the fundamentals that go into modern calculations. Simplified one group diffusion theory models are presented ...
Neutronic Analysis For Nuclear Reactor Systems
This expanded new edition develops the theory of nuclear reactors from the fundamentals of fission to the operating characteristics of modern reactors. The first half of the book emphasizes reactor criticality analysis and all of the fundamentals that go into modern calculations. Simplified one group diffusion theory models are presented and extended into sophisticated multi-group transport theory models. The second half of the book deals with the two main topics of interest related to operating reactors - reactor kinetics/dynamics, and in-core fuel management. Additional chapters have been added to expand and bring the material up-to-date and include the utilization of more computer codes. Code models and detailed data sets are provided along with example problems making this a useful text for students and researchers wishing to develop an understanding of nuclear power and its implementation in today's modern energy spectrum. Covers the fundamentals of neutronic analysis for nuclear reactor systems to help understand nuclear reactor theory; Describes the benefits, uses, safety features, and challenges related to implementation of Small Modular Reactors; Provides examples, data sets, and code to assist the reader in obtaining mastery over the subjects.
https://magrudy-assets.storage.googleapis.com/9783030049058.jpg
188.990000 USD

Neutronic Analysis For Nuclear Reactor Systems

by Bahman Zohuri
Hardback
Book cover image
Terahertz (THz) radiation with frequencies between 100 GHz and 30 THz has developed into an important tool of science and technology, with numerous applications in materials characterization, imaging, sensor technologies, and telecommunications. Recent progress in THz generation has provided ultrashort THz pulses with electric field amplitudes of up to several ...
Concepts and Applications of Nonlinear Terahertz Spectroscopy
Terahertz (THz) radiation with frequencies between 100 GHz and 30 THz has developed into an important tool of science and technology, with numerous applications in materials characterization, imaging, sensor technologies, and telecommunications. Recent progress in THz generation has provided ultrashort THz pulses with electric field amplitudes of up to several megavolts/cm. This development opens the new research field of nonlinear THz spectroscopy in which strong light-matter interactions are exploited to induce quantum excitations and/or charge transport and follow their nonequilibrium dynamics in time-resolved experiments. This book introduces methods of THz generation and nonlinear THz spectroscopy in a tutorial way, discusses the relevant theoretical concepts, and presents prototypical, experimental, and theoretical results in condensed matter physics. The potential of nonlinear THz spectroscopy is illustrated by recent research, including an overview of the relevant literature.
https://magrudy-assets.storage.googleapis.com/9781643272139.jpg
62.950000 USD

Concepts and Applications of Nonlinear Terahertz Spectroscopy

by Michael Woerner, Klaus Reimann, Thomas Elsaesser
Paperback / softback
Book cover image
This book provides an overview of the recent experimental and theoretical results on interactions of heavy ions with gaseous, solid and plasma targets from the perspective of atomic physics. The topics discussed comprise stopping power, multiple-electron loss and capture processes, equilibrium and non-equilibrium charge-state fractions in penetration of fast ion ...
Basic Atomic Interactions of Accelerated Heavy Ions in Matter: Atomic Interactions of Heavy Ions
This book provides an overview of the recent experimental and theoretical results on interactions of heavy ions with gaseous, solid and plasma targets from the perspective of atomic physics. The topics discussed comprise stopping power, multiple-electron loss and capture processes, equilibrium and non-equilibrium charge-state fractions in penetration of fast ion beams through matter including relativistic domain. It also addresses mean charge-states and equilibrium target thickness in ion-beam penetrations, isotope effects in low-energy electron capture, lifetimes of heavy ion beams, semi-empirical formulae for effective cross sections. The book is intended for researchers and graduate students working in atomic, plasma and accelerator physics.
https://magrudy-assets.storage.googleapis.com/9783030091224.jpg
157.490000 USD

Basic Atomic Interactions of Accelerated Heavy Ions in Matter: Atomic Interactions of Heavy Ions

by Viacheslav Shevelko, Nicolas Winckler, Makoto Imai, Inga Tolstikhina
Paperback / softback
Book cover image
Field theory, relying on the concept of continuous space and time while confronted with the quantum physical nature of observable quantities, still has some fundamental challenges to face. One such challenge is to understand the emergence of complexity in the behavior of interacting elementary fields, including among other things nontrivial ...
Emergence of Temperature in Examples and Related Nuisances in Field Theory
Field theory, relying on the concept of continuous space and time while confronted with the quantum physical nature of observable quantities, still has some fundamental challenges to face. One such challenge is to understand the emergence of complexity in the behavior of interacting elementary fields, including among other things nontrivial phase structures of elementary matter at high energy density or an atypical emergence of statistical properties, e.g., when an apparent temperature is proportional to a constant acceleration in a homogeneous gravitational field. Most modern textbooks on thermal field theory are mainly concerned with how the field theory formalism should be used if a finite temperature is given. In contrast, this short primer explores how the phenomenon of temperature emerges physically for elementary fields - inquiring about the underlying kinetic field theory and the way energy fluctuations and other noise should be handled - and it investigates whether and how this harmonizes with traditional field theory concepts like spectral evolution, the Keldysh formalism, and phase transitions.
https://magrudy-assets.storage.googleapis.com/9783030116880.jpg
62.990000 USD

Emergence of Temperature in Examples and Related Nuisances in Field Theory

by Antal Jakovac, Tamas Sandor Biro
Paperback / softback
Book cover image
Terahertz (THz) radiation with frequencies between 100 GHz and 30 THz has developed into an important tool of science and technology, with numerous applications in materials characterization, imaging, sensor technologies, and telecommunications. Recent progress in THz generation has provided ultrashort THz pulses with electric field amplitudes of up to several ...
Concepts and Applications of Nonlinear Terahertz Spectroscopy
Terahertz (THz) radiation with frequencies between 100 GHz and 30 THz has developed into an important tool of science and technology, with numerous applications in materials characterization, imaging, sensor technologies, and telecommunications. Recent progress in THz generation has provided ultrashort THz pulses with electric field amplitudes of up to several megavolts/cm. This development opens the new research field of nonlinear THz spectroscopy in which strong light-matter interactions are exploited to induce quantum excitations and/or charge transport and follow their nonequilibrium dynamics in time-resolved experiments. This book introduces methods of THz generation and nonlinear THz spectroscopy in a tutorial way, discusses the relevant theoretical concepts, and presents prototypical, experimental, and theoretical results in condensed matter physics. The potential of nonlinear THz spectroscopy is illustrated by recent research, including an overview of the relevant literature.
https://magrudy-assets.storage.googleapis.com/9781643272177.jpg
83.950000 USD

Concepts and Applications of Nonlinear Terahertz Spectroscopy

by Michael Woerner, Klaus Reimann, Thomas Elsaesser
Hardback
Book cover image
A shocking expos from the most powerful insider in nuclear regulation about how the nuclear energy industry endangers our lives--and why Congress does nothing to stop it. Greg Jaczko never planned things to turn out this way. A Birkenstocks-wearing physics PhD, he had never heard of the Nuclear Regulatory Commission ...
Confessions of a Rogue Nuclear Regulator
A shocking expos from the most powerful insider in nuclear regulation about how the nuclear energy industry endangers our lives--and why Congress does nothing to stop it. Greg Jaczko never planned things to turn out this way. A Birkenstocks-wearing physics PhD, he had never heard of the Nuclear Regulatory Commission (NRC) when he came to Washington and--thanks to the determination of a powerful senator--found himself at the agency's head. He felt like Dorothy invited behind the curtain at Oz. The problem was that Jaczko wasn't the kind of leader the NRC had seen before: he had no ties to the nuclear industry, few connections in Washington, and no agenda other than to ensure that nuclear technology was deployed safely. And so he witnessed what outsiders like him were never meant to see, including an agency overpowered by the industry it was meant to regulate and a political system determined to keep it that way. After the shocking nuclear disaster at Fukushima in Japan, and the American nuclear industry's refusal to make the changes necessary to prevent a catastrophe like that from happening here, Jaczko started saying something aloud that no one else had dared: nuclear power has fatal flaws. Written in a tone that's equal parts self-deprecating, puzzled, and passionate, Confessions of a Rogue Nuclear Regulator tells the story of a man who got pushed from his high perch for fighting to keep Americans safe. Never before has the chairman of the world's foremost nuclear regulatory agency challenged the nuclear industry to expose how these companies put us at risk. Because if we (and they) don't act now, there will be another Fukushima. Only this time, it could happen here.
https://magrudy-assets.storage.googleapis.com/9781476755762.jpg
27.300000 USD

Confessions of a Rogue Nuclear Regulator

by Gregory B Jaczko
Hardback
Book cover image
Our understanding of subatomic particles developed over many years, although a clear picture of the different particles, their interactions and their inter-relationships only emerged in the latter part of the twentieth century. The first subatomic particles to be investigated were those which exhibit readily observable macroscopic behavior, specifically these are ...
Particle Physics
Our understanding of subatomic particles developed over many years, although a clear picture of the different particles, their interactions and their inter-relationships only emerged in the latter part of the twentieth century. The first subatomic particles to be investigated were those which exhibit readily observable macroscopic behavior, specifically these are the photon, which we observe as light and the electron, which is manifested as electricity. The true nature of these particles, however, only became clear within the last century or so. The development of the Standard Model provided clarification of the way in which various particles, specifically the hadrons, relate to one another and the way in which their properties are determined by their structure. The final piece, perhaps, of the final model, that is the means by which some particles acquire mass, has just recently been clarified with the observation of the Higgs boson. Since the 1970s it has been known that the measured solar neutrino flux was inconsistent with the flux predicted by solar models. The existence of neutrinos with mass would allow for neutrino flavor oscillations and would provide an explanation for this discrepancy. Only in the past few years, has there been clear experimental evidence that neutrinos have mass. The description of particle structure on the basis of the Standard Model, along with recent discoveries concerning neutrino properties, provides us with a comprehensive picture of the properties of subatomic particles. Part I of the present book provides an overview of the Standard Model of particle physics including an overview of the discovery and properties of the Higgs boson. Part II of the book summarizes the important investigations into the physics of neutrinos and provides an overview of the interpretation of these studies.
https://magrudy-assets.storage.googleapis.com/9781643273631.jpg
73.450000 USD

Particle Physics

by Richard A Dunlap
Hardback
Book cover image
This book introduces the spectral approach to transport problems in infinite disordered systems characterized by Anderson-type Hamiltonians. The spectral approach determines (with probability one) the existence of extended states for nonzero disorder in infinite lattices of any dimension and geometry. Here, the author focuses on the critical 2D case, where ...
Spectral Approach to Transport Problems in Two-Dimensional Disordered Lattices: Physical Interpretation and Applications
This book introduces the spectral approach to transport problems in infinite disordered systems characterized by Anderson-type Hamiltonians. The spectral approach determines (with probability one) the existence of extended states for nonzero disorder in infinite lattices of any dimension and geometry. Here, the author focuses on the critical 2D case, where previous numerical and experimental results have shown disagreement with theory. Not being based on scaling theory, the proposed method avoids issues related to boundary conditions and provides an alternative approach to transport problems where interaction with various types of disorder is considered. Beginning with a general overview of Anderson-type transport problems and their relevance to physical systems, it goes on to discuss in more detail the most relevant theoretical, numerical, and experimental developments in this field of research. The mathematical formulation of the innovative spectral approach is introduced together with a physical interpretation and discussion of its applicability to physical systems, followed by a numerical study of delocalization in the 2D disordered honeycomb, triangular, and square lattices. Transport in the 2D honeycomb lattice with substitutional disorder is investigated employing a spectral analysis of the quantum percolation problem. Next, the applicability of the method is extended to the classical regime, with an examination of diffusion of lattice waves in 2D disordered complex plasma crystals, along with discussion of proposed future developments in the study of complex transport problems using spectral theory.
https://magrudy-assets.storage.googleapis.com/9783030022112.jpg
146.990000 USD

Spectral Approach to Transport Problems in Two-Dimensional Disordered Lattices: Physical Interpretation and Applications

by Evdokiya Georgieva Kostadinova
Hardback
Book cover image
The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. ...
An Introduction to Plasma Physics and Its Space Applications, Volume 1: Fundamentals and Elementary Processes
The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.
https://magrudy-assets.storage.googleapis.com/9781643271750.jpg
79.750000 USD

An Introduction to Plasma Physics and Its Space Applications, Volume 1: Fundamentals and Elementary Processes

by Luis Conde
Hardback
Book cover image
Concentrating on techniques for the detection and measurement of radioactivity, this book offers a guide to selecting the type of counter, type of source sample, duration for which the counting must be made, and the radiation emitted by the isotope for its efficient detection. It introduces a novel concept to ...
Nuclear Chemistry: Detection and Analysis of Radiation
Concentrating on techniques for the detection and measurement of radioactivity, this book offers a guide to selecting the type of counter, type of source sample, duration for which the counting must be made, and the radiation emitted by the isotope for its efficient detection. It introduces a novel concept to explain not only the decay processes but also the selection of counting procedures for detecting and measuring radioactivity. The author builds up the foundation from the nature of the interaction of radiation with matter. He also highlights the differences between an ordinary chemical laboratory and a radiochemical one.
https://magrudy-assets.storage.googleapis.com/9781138116702.jpg
102.36 USD

Nuclear Chemistry: Detection and Analysis of Radiation

by Madhuri Sharon, Maheshwar Sharon
Paperback / softback
Book cover image
The second edition of this monograph discusses the usefulness of heavy flavor as a probe of TeV-scale physics, exploring a number of recently-uncovered flavor anomalies that are suggestive of possible TeV-scale phenomena. The large human endeavor at the Large Hadron Collider has not turned up any New Physics, except the ...
Flavor Physics and the TeV Scale
The second edition of this monograph discusses the usefulness of heavy flavor as a probe of TeV-scale physics, exploring a number of recently-uncovered flavor anomalies that are suggestive of possible TeV-scale phenomena. The large human endeavor at the Large Hadron Collider has not turned up any New Physics, except the last particle of the Standard Model, the Higgs boson. Revised and updated throughout, this book puts the first results from the LHC into perspective and provides an outlook for a new era of flavor physics. The author readdresses many questions raised in the first edition and poses new ones. As before, the experimental perspective is taken, with a focus on processes, rather than theories or models, as a basis for exploration, and two-thirds of the book is concerned with b -^ s or bs sb transitions. In the face of the advent of Belle II and other flavor experiments, this book becomes a part of a dialogue between the energy/collider and intensity/flavor frontiers that will continue over the coming decade. Researchers with an interest in modern particle physics will find this book particularly valuable.
https://magrudy-assets.storage.googleapis.com/9783662586273.jpg
157.490000 USD

Flavor Physics and the TeV Scale

by George W. S. Hou
Hardback
Book cover image
This textbook fills the gap between the very basic and the highly advanced volumes that are widely available on the subject. It offers a concise but comprehensive overview of a number of topics, like general relativity, fission and fusion, which are otherwise only available with much more detail in other ...
Introduction to Nuclear and Particle Physics
This textbook fills the gap between the very basic and the highly advanced volumes that are widely available on the subject. It offers a concise but comprehensive overview of a number of topics, like general relativity, fission and fusion, which are otherwise only available with much more detail in other textbooks. Providing a general introduction to the underlying concepts (relativity, fission and fusion, fundamental forces), it allows readers to develop an idea of what these two research fields really involve. The book uses real-world examples to make the subject more attractive and encourage the use of mathematical formulae. Besides short scientists' biographies, diagrams, end-of-chapter problems and worked solutions are also included. Intended mainly for students of scientific disciplines such as physics and chemistry who want to learn about the subject and/or the related techniques, it is also useful to high school teachers wanting to refresh or update their knowledge and to interested non-experts.
https://magrudy-assets.storage.googleapis.com/9783319938547.jpg
52.490000 USD

Introduction to Nuclear and Particle Physics

by Saverio D'Auria
Paperback / softback
Book cover image
This book mainly focuses on the experimental research of rf breakdown and field emission with novel methods, including triggering rf breakdown with high intensity laser and pin-shaped cathodes as well as locating field emitters with a high resolution in-situ imaging system. With these methods, this book has analyzed the power ...
Investigations on rf breakdown phenomenon in high gradient accelerating structures
This book mainly focuses on the experimental research of rf breakdown and field emission with novel methods, including triggering rf breakdown with high intensity laser and pin-shaped cathodes as well as locating field emitters with a high resolution in-situ imaging system. With these methods, this book has analyzed the power flow between cells during rf breakdown, observed the evolution of field emission during rf conditioning and the dependence of field emission on stored energy, and studied the field emitter distribution and origination. The research findings greatly expand the understanding of rf breakdown and field emission, which will in turn benefit future study into electron sources, particle accelerators, and high gradient rf devices in general.
https://magrudy-assets.storage.googleapis.com/9789811356834.jpg
125.990000 USD

Investigations on rf breakdown phenomenon in high gradient accelerating structures

by Jiahang Shao
Paperback / softback
Page 1 of 40