Filter
(found 4102 products)
Book cover image
Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of ...
Tensors: Geometry and Applications
Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, $\mathbf{P}$ versus $\mathbf{NP}$, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, $G$-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.
https://magrudy-assets.storage.googleapis.com/9780821869079.jpg
140.41 USD

Tensors: Geometry and Applications

by J. M. Landsberg
Hardback
Book cover image
What's Happening in the Mathematical Sciences looks at some highlights of the most recent developments in mathematics. These include the mathematics behind stories that made headlines, as well as fascinating mathematical stories that never made it into the newspapers. In 2009, a flu pandemic, the world's first in more than ...
What's Happening in the Mathematical Sciences, Volume 9
What's Happening in the Mathematical Sciences looks at some highlights of the most recent developments in mathematics. These include the mathematics behind stories that made headlines, as well as fascinating mathematical stories that never made it into the newspapers. In 2009, a flu pandemic, the world's first in more than 40 years, tested a new generation of mathematical models that take some of the guesswork out of public health decisions. As health officials rushed to quell the outbreak of H1N1 flu, mathematicians were working just as hurriedly to answer questions like these: Was the epidemic serious enough to justify school closings or quarantines? Who should be vaccinated first, the elderly or the young? Their findings substantially affected the response of local governments, national governments, and the World Health Organization. Mathematics can also help society prepare for other kinds of natural and manmade disasters. A major tsunami in 2011 in Japan, like the one seven years earlier in the Indian Ocean, highlighted flaws in our understanding of these catastrophic events and inadequacies in our early warning systems. Geoscientists are working together with mathematicians to improve our short-term forecasting ability and quantify the long-term risks of tsunamis. Meanwhile, in California, another group of mathematicians succeeded in adapting earthquake prediction algorithms to forecast criminal activity. Their predictive policing software was tested in Los Angeles and is being adopted by other cities across the United States. Fortunately, not all mathematics has to do with emergencies. Pure mathematicians have been busy cleaning out their closets of long-standing open problems. In 2012, two conjectures about different kinds of minimising surfaces were solved: the Willmore Conjecture (minimising energy) and the Lawson Conjecture (minimising area). Also in 2012, following up on the extraordinary proofs of the Poincare Conjecture and Thurston's Geometrization Conjecture, topologists proved a collection of conjectures that ensure that three-dimensional spaces can all be constructed in a uniform way. Meanwhile, for the last ten years, a new way of understanding algebraic curves and surfaces has developed, leading to a subject now known as tropical geometry. With the new ideas, certain hard problems in algebraic geometry suddenly become easy and certain mathematical mysteries of string theory begin to make sense. In physics, the nine-billion-dollar search for the elusive Higgs boson finally bagged its quarry in 2012. This discovery, one of the most widely publicised science stories of the year, provides experimental evidence for the Higgs mechanism, a nearly 50-year-old mathematical argument that explains how certain subatomic particles acquire mass. Rounding out this volume are chapters on a new statistical technique called topic modelling, which is breaking down the academic barriers between math and the humanities, and new discoveries about mathematicians' (and a lot of other people's) favourite toy: the Rubik's Cube.
https://magrudy-assets.storage.googleapis.com/9780821887394.jpg
38.13 USD

What's Happening in the Mathematical Sciences, Volume 9

by Dana MacKenzie
Paperback / softback
Book cover image
Optimal control theory is concerned with finding control functions that minimize cost functions for systems described by differential equations. The methods have found widespread applications in aeronautics, mechanical engineering, the life sciences, and many other disciplines. This book focuses on optimal control problems where the state equation is an elliptic ...
Optimal Control of Partial Differential Equations: Theory, Methods and Applications
Optimal control theory is concerned with finding control functions that minimize cost functions for systems described by differential equations. The methods have found widespread applications in aeronautics, mechanical engineering, the life sciences, and many other disciplines. This book focuses on optimal control problems where the state equation is an elliptic or parabolic partial differential equation. Included are topics such as the existence of optimal solutions, necessary optimality conditions and adjoint equations, second-order sufficient conditions, and main principles of selected numerical techniques. It also contains a survey on the Karush-Kuhn-Tucker theory of nonlinear programming in Banach spaces. The exposition begins with control problems with linear equation, quadratic cost function and control constraints. To make the book self-contained, basic facts on weak solutions of elliptic and parabolic equations are introduced. Principles of functional analysis are introduced and explained as they are needed. Many simple examples illustrate the theory and its hidden difficulties. This start to the book makes it fairly self-contained and suitable for advanced undergraduates or beginning graduate students. Advanced control problems for nonlinear partial differential equations are also discussed. As prerequisites, results on boundedness and continuity of solutions to semilinear elliptic and parabolic equations are addressed. These topics are not yet readily available in books on PDEs, making the exposition also interesting for researchers. Alongside the main theme of the analysis of problems of optimal control, Troltzsch also discusses numerical techniques. The exposition is confined to brief introductions into the basic ideas in order to give the reader an impression of how the theory can be realized numerically. After reading this book, the reader will be familiar with the main principles of the numerical analysis of PDE-constrained optimization.
https://magrudy-assets.storage.googleapis.com/9780821849040.jpg
154.27 USD
Hardback
Book cover image
There is a particular fascination when two apparently disjoint areas of mathematics turn out to have a meaningful connection to each other. The main goal of this book is to provide a largely self-contained, in-depth account of the linkage between nonassociative algebra and projective planes, with particular emphasis on octonion ...
The Role of Nonassociative Algebra in Projective Geometry
There is a particular fascination when two apparently disjoint areas of mathematics turn out to have a meaningful connection to each other. The main goal of this book is to provide a largely self-contained, in-depth account of the linkage between nonassociative algebra and projective planes, with particular emphasis on octonion planes. There are several new results and many, if not most, of the proofs are new. The development should be accessible to most graduate students and should give them introductions to two areas which are often referenced but not often taught. On the geometric side, the book introduces coordinates in projective planes, relates coordinate properties to transitivity properties of certain automorphisms and to configuration conditions. It also classifies higher-dimensional geometries and determines their automorphisms. The exceptional octonion plane is studied in detail in a geometric context that allows nondivision coordinates. An axiomatic version of that context is also provided. Finally, some connections of nonassociative algebra to other geometries, including buildings, are outlined. On the algebraic side, basic properties of alternative algebras are derived, including the classification of alternative division rings. As tools for the study of the geometries, an axiomatic development of dimension, the basics of quadratic forms, a treatment of homogeneous maps and their polarizations, and a study of norm forms on hermitian matrices over composition algebras are included.
https://magrudy-assets.storage.googleapis.com/9781470418496.jpg
128.23 USD

The Role of Nonassociative Algebra in Projective Geometry

by John R. Faulkner
Hardback
Book cover image
Algebraic methods and arguments in statistics and probability are well known, from Gauss' least squares principle through Fisher's method of variance decomposition. The relevance of group-theoretic arguments, for example, became evident in the 1980s. Such techniques continue to be of interest today, along with other developments, such as the use ...
Algebraic Methods in Statistics and Probability: AMS Special Session on Algebraic Methods and Statistics, April 8-9, 2000, University of Notre Dame, Notre Dame, Indiana
Algebraic methods and arguments in statistics and probability are well known, from Gauss' least squares principle through Fisher's method of variance decomposition. The relevance of group-theoretic arguments, for example, became evident in the 1980s. Such techniques continue to be of interest today, along with other developments, such as the use of graph theory in modelling complex stochastic systems.This volume is based on lectures presented at the AMS Special Session on Algebraic Methods and Statistics held at the University of Notre Dame (Indiana) and on contributed articles solicited for this volume. The articles are intended to foster communication between representatives of the diverse scientific areas in which these functions are utilized and to further the trend of utilizing algebraic methods in the areas of statistics and probability. This is one of few volumes devoted to the subject of algebraic methods in statistics and probability. The wide range of topics covered in this volume demonstrates the vigorous level of research and opportunities ongoing in these areas.
https://magrudy-assets.storage.googleapis.com/9780821826874.jpg
185.04 USD

Algebraic Methods in Statistics and Probability: AMS Special Session on Algebraic Methods and Statistics, April 8-9, 2000, University of Notre Dame, Notre Dame, Indiana

by Donald St.P. Richards, Marlos A. G. Viana
Paperback / softback
Book cover image
The main topic of this book is the deep relation between the spacings between zeros of zeta and $L$-functions and spacings between eigenvalues of random elements of large compact classical groups. This relation, the Montgomery-Odlyzko law, is shown to hold for wide classes of zeta and $L$-functions over finite fields. ...
Random Matrices, Frobenius Eigenvalues, and Monodromy
The main topic of this book is the deep relation between the spacings between zeros of zeta and $L$-functions and spacings between eigenvalues of random elements of large compact classical groups. This relation, the Montgomery-Odlyzko law, is shown to hold for wide classes of zeta and $L$-functions over finite fields. The book draws on and gives accessible accounts of many disparate areas of mathematics, from algebraic geometry, moduli spaces, monodromy, equidistribution, and the Weil conjectures, to probability theory on the compact classical groups in the limit as their dimension goes to infinity and related techniques from orthogonal polynomials and Fredholm determinants.
https://magrudy-assets.storage.googleapis.com/9780821810170.jpg
146.82 USD

Random Matrices, Frobenius Eigenvalues, and Monodromy

by Peter Sarnak, Nicholas M. Katz
Hardback
Book cover image
The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that ...
Geometries
The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms ``toy geometries'', the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking this knowledge may refer to a compendium in Chapter 0. Per the author's predilection, the book contains very little regarding the axiomatic approach to geometry (save for a single chapter on the history of non-Euclidean geometry), but two Appendices provide a detailed treatment of Euclid's and Hilbert's axiomatics. Perhaps the most important aspect of this course is the problems, which appear at the end of each chapter and are supplemented with answers at the conclusion of the text. By analyzing and solving these problems, the reader will become capable of thinking and working geometrically, much more so than by simply learning the theory. Ultimately, the author makes the distinction between concrete mathematical objects called ``geometries'' and the singular ``geometry'', which he understands as a way of thinking about mathematics. Although the book does not address branches of mathematics and mathematical physics such as Riemannian and Kahler manifolds or, say, differentiable manifolds and conformal field theories, the ideology of category language and transformation groups on which the book is based prepares the reader for the study of, and eventually, research in these important and rapidly developing areas of contemporary mathematics.
https://magrudy-assets.storage.googleapis.com/9780821875711.jpg
94.75 USD

Geometries

by A. B. Sossinsky
Paperback / softback
Book cover image
The best way to penetrate the subtleties of the theory of integration is by solving problems. This book, like its two predecessors, is a wonderful source of interesting and challenging problems. As a resource, it is unequaled. It offers a much richer selection than is found in any current textbook. ...
Problems in Mathematical Analysis, Volume 3: Integration
The best way to penetrate the subtleties of the theory of integration is by solving problems. This book, like its two predecessors, is a wonderful source of interesting and challenging problems. As a resource, it is unequaled. It offers a much richer selection than is found in any current textbook. Moreover, the book includes a complete set of solutions. This is the third volume of Problems in Mathematical Analysis . The topic here is integration for real functions of one real variable.The first chapter is devoted to the Riemann and the Riemann-Stieltjes integrals. Chapter 2 deals with Lebesgue measure and integration. The authors include some famous, and some not so famous, inequalities related to Riemann integration. Many of the problems for Lebesgue integration concern convergence theorems and the interchange of limits and integrals. The book closes with a section on Fourier series, with a concentration on Fourier coefficients of functions from particular classes and on basic theorems for convergence of Fourier series.The book is mainly geared toward students studying the basic principles of analysis. However, given its selection of problems, organization, and level, it would be an ideal choice for tutorial or problem-solving seminars, particularly those geared toward the Putnam exam. It is also suitable for self-study. The presentation of the material is designed to help student comprehension, to encourage them to ask their own questions, and to start research. The collection of problems will also help teachers who wish to incorporate problems into their lectures. The problems are grouped into sections according to the methods of solution. Solutions for the problems are provided. Problems in Mathematical Analysis I and II are available as Volumes 4 and 12 in the AMS series, Student Mathematical Library .
https://magrudy-assets.storage.googleapis.com/9780821832981.jpg
54.080000 USD
Paperback / softback
Book cover image
This third edition is a lively and provocative tract on how to teach mathematics in today's new world of online learning tools and innovative teaching devices. The author guides the reader through the joys and pitfalls of interacting with modern undergraduates--telling you very explicitly what to do and what not ...
How to Teach Mathematics
This third edition is a lively and provocative tract on how to teach mathematics in today's new world of online learning tools and innovative teaching devices. The author guides the reader through the joys and pitfalls of interacting with modern undergraduates--telling you very explicitly what to do and what not to do. This third edition has been streamlined from the second edition, but still includes the nuts and bolts of good teaching, discussing material related to new developments in teaching methodology and technique, as well as adding an entire new chapter on online teaching methods.
https://magrudy-assets.storage.googleapis.com/9781470425524.jpg
43.49 USD

How to Teach Mathematics

by Steven G. Krantz
Paperback / softback
Book cover image
Markov processes are among the most important stochastic processes for both theory and applications. This book develops the general theory of these processes, and applies this theory to various special examples. The initial chapter is devoted to the most important classical example - one dimensional Brownian motion. This, together with ...
Continuous Time Markov Processes: An Introduction
Markov processes are among the most important stochastic processes for both theory and applications. This book develops the general theory of these processes, and applies this theory to various special examples. The initial chapter is devoted to the most important classical example - one dimensional Brownian motion. This, together with a chapter on continuous time Markov chains, provides the motivation for the general setup based on semigroups and generators. Chapters on stochastic calculus and probabilistic potential theory give an introduction to some of the key areas of application of Brownian motion and its relatives. A chapter on interacting particle systems treats a more recently developed class of Markov processes that have as their origin problems in physics and biology. This is a textbook for a graduate course that can follow one that covers basic probabilistic limit theorems and discrete time processes.
https://magrudy-assets.storage.googleapis.com/9780821849491.jpg
107.77 USD
Hardback
Book cover image
This book is an introduction to the theory of quiver representations and quiver varieties, starting with basic definitions and ending with Nakajima's work on quiver varieties and the geometric realization of Kac-Moody Lie algebras. The first part of the book is devoted to the classical theory of quivers of finite ...
Quiver Representations and Quiver Varieties
This book is an introduction to the theory of quiver representations and quiver varieties, starting with basic definitions and ending with Nakajima's work on quiver varieties and the geometric realization of Kac-Moody Lie algebras. The first part of the book is devoted to the classical theory of quivers of finite type. Here the exposition is mostly self-contained and all important proofs are presented in detail. The second part contains the more recent topics of quiver theory that are related to quivers of infinite type: Coxeter functor, tame and wild quivers, McKay correspondence, and representations of Euclidean quivers. In the third part, topics related to geometric aspects of quiver theory are discussed, such as quiver varieties, Hilbert schemes, and the geometric realization of Kac-Moody algebras. Here some of the more technical proofs are omitted; instead only the statements and some ideas of the proofs are given, and the reader is referred to original papers for details. The exposition in the book requires only a basic knowledge of algebraic geometry, differential geometry, and the theory of Lie groups and Lie algebras. Some sections use the language of derived categories; however, the use of this language is reduced to a minimum. The many examples make the book accessible to graduate students who want to learn about quivers, their representations, and their relations to algebraic geometry and Lie algebras.
https://magrudy-assets.storage.googleapis.com/9781470423070.jpg
164.58 USD
Hardback
Book cover image
There are many bits and pieces of folklore in mathematics that are passed down from advisor to student, or from collaborator to collaborator, but which are too fuzzy and non-rigorous to be discussed in the formal literature. Traditionally, it was a matter of luck and location as to who learned ...
Structure and Randomness: pages from year one of a mathematical blog
There are many bits and pieces of folklore in mathematics that are passed down from advisor to student, or from collaborator to collaborator, but which are too fuzzy and non-rigorous to be discussed in the formal literature. Traditionally, it was a matter of luck and location as to who learned such folklore mathematics. But today, such bits and pieces can be communicated effectively and efficiently via the semiformal medium of research blogging. This book grew from such a blog.In 2007, Terry Tao began a mathematical blog, as an outgrowth of his own website at UCLA. This book is based on a selection of articles from the first year of that blog. These articles discuss a wide range of mathematics and its applications, ranging from expository articles on quantum mechanics, Einstein's equation E = mc2, or compressed sensing, to open problems in analysis, combinatorics, geometry, number theory, and algebra, to lecture series on random matrices, Fourier analysis, or the dichotomy between structure and randomness that is present in many subfields of mathematics, to more philosophical discussions on such topics as the interplay between finitary and infinitary in analysis.Some selected commentary from readers of the blog has also been included at the end of each article. While the articles vary widely in subject matter and level, they should be broadly accessible to readers with a general graduate mathematics background; the focus in many articles is on the 'big picture' and on informal discussion, with technical details largely being left to the referenced literature.
https://magrudy-assets.storage.googleapis.com/9780821846957.jpg
55.70 USD

Structure and Randomness: pages from year one of a mathematical blog

by Terence Tao
Paperback / softback
Book cover image
The notion of a 'quantum group' was introduced by V.G. Dinfeld and M. Jimbo, independently, in their study of the quantum Yang-Baxter equation arising from 2-dimensional solvable lattice models. Quantum groups are certain families of Hopf algebras that are deformations of universal enveloping algebras of Kac-Moody algebras. And over the ...
Introduction to Quantum Groups and Crystal Bases
The notion of a 'quantum group' was introduced by V.G. Dinfeld and M. Jimbo, independently, in their study of the quantum Yang-Baxter equation arising from 2-dimensional solvable lattice models. Quantum groups are certain families of Hopf algebras that are deformations of universal enveloping algebras of Kac-Moody algebras. And over the past 20 years, they have turned out to be the fundamental algebraic structure behind many branches of mathematics and mathematical physics, such as solvable lattice models in statistical mechanics, topological invariant theory of links and knots, representation theory of Kac-Moody algebras, representation theory of algebraic structures, topological quantum field theory, geometric representation theory, and $C^*$-algebras. In particular, the theory of 'crystal bases' or 'canonical bases' developed independently by M. Kashiwara and G. Lusztig provides a powerful combinatorial and geometric tool to study the representations of quantum groups.The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.
https://magrudy-assets.storage.googleapis.com/9780821828748.jpg
111.49 USD
Hardback
Book cover image
This book provides a quick, but very readable introduction to stochastic differential equations-that is, to differential equations subject to additive white noise and related random disturbances. The exposition is strongly focused upon the interplay between probabilistic intuition and mathematical rigour. Topics include a quick survey of measure theoretic probability theory, ...
An Introduction to Stochastic Differential Equations
This book provides a quick, but very readable introduction to stochastic differential equations-that is, to differential equations subject to additive white noise and related random disturbances. The exposition is strongly focused upon the interplay between probabilistic intuition and mathematical rigour. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mathematics, physics, financial mathematics, etc., who want to learn the basics of stochastic differential equations. The reader is assumed to be fairly familiar with measure theoretic mathematical analysis, but is not assumed to have any particular knowledge of probability theory (which is rapidly developed in Chapter 2 of the book).
https://magrudy-assets.storage.googleapis.com/9781470410544.jpg
30.22 USD
Hardback
Book cover image
Matrix groups are a beautiful subject and are central to many fields in mathematics and physics. They touch upon an enormous spectrum within the mathematical arena. This textbook brings them into the undergraduate curriculum. It is excellent for a one-semester course for students familiar with linear and abstract algebra and ...
Matrix Groups for Undergraduates
Matrix groups are a beautiful subject and are central to many fields in mathematics and physics. They touch upon an enormous spectrum within the mathematical arena. This textbook brings them into the undergraduate curriculum. It is excellent for a one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, and maximal tori. The volume is suitable for graduate students and researchers interested in group theory.
https://magrudy-assets.storage.googleapis.com/9780821837856.jpg
60.44 USD

Matrix Groups for Undergraduates

by Kristopher Tapp
Paperback
Book cover image
The first English edition of this magnificent textbook, translated from Russian, was published in three substantial volumes of 459, 347, and 374 pages, respectively. In this second English edition all three volumes have been put together with a new, combined index and bibliography. Some corrections and revisions have been made ...
Theory of Functions of a Complex Variable
The first English edition of this magnificent textbook, translated from Russian, was published in three substantial volumes of 459, 347, and 374 pages, respectively. In this second English edition all three volumes have been put together with a new, combined index and bibliography. Some corrections and revisions have been made in the text, primarily in Volume II. Volumes II and III contain numerous references to the earlier volumes, so that the reader is reminded of the exact statements (and proofs) of the more elementary results made use of. The three-volume-in-one format makes it easy to flip back the pages, refresh one's memory, and proceed. The proofs chosen are those that give the student the best 'feel' for the subject. The watchword is clarity and straightforwardness. The author was a leading Soviet function-theorist: It is seldom that an expert of his stature puts himself so wholly at the service of the student. This book includes over 150 illustrations and 700 exercises.
https://magrudy-assets.storage.googleapis.com/9780821837801.jpg
140.41 USD

Theory of Functions of a Complex Variable

by A I Markushevich
Hardback
Book cover image
Most mathematicians, when asked about the nature and meaning of mathematics, vacillate between the two unrealistic poles of Platonism and formalism. By looking carefully at what mathematicians really do when they are doing mathematics, Reuben Hersh offers an escape from this trap. This book of selected articles and essays provides ...
Experiencing Mathematics: What do we do, when we do mathematics?
Most mathematicians, when asked about the nature and meaning of mathematics, vacillate between the two unrealistic poles of Platonism and formalism. By looking carefully at what mathematicians really do when they are doing mathematics, Reuben Hersh offers an escape from this trap. This book of selected articles and essays provides an honest, coherent, and clearly understandable account of mathematicians' proof as it really is, and of the existence and reality of mathematical entities. It follows in the footsteps of Poincare, Hadamard, and Polya. The pragmatism of John Dewey is a better fit for mathematical practice than the dominant analytic philosophy''. Dialogue, satire, and fantasy enliven the philosophical and methodological analysis. Reuben Hersh has written extensively on mathematics, often from the point of view of a philosopher of science. His book with Philip Davis, The Mathematical Experience, won the National Book Award in science.
https://magrudy-assets.storage.googleapis.com/9780821894200.jpg
74.30 USD

Experiencing Mathematics: What do we do, when we do mathematics?

by Reuben Hersh
Paperback / softback
Book cover image
The University of Virginia (Charlottesville) hosted an international conference on Infinite-dimensional Aspects of Representation Theory and Applications. This volume contains papers resulting from the mini-courses and talks given at the meeting. Beyond the techniques and ideas related to representation theory, the book demonstrates connections to number theory, algebraic geometry, and ...
Infinite-dimensional Aspects of Representation Theory and Applications
The University of Virginia (Charlottesville) hosted an international conference on Infinite-dimensional Aspects of Representation Theory and Applications. This volume contains papers resulting from the mini-courses and talks given at the meeting. Beyond the techniques and ideas related to representation theory, the book demonstrates connections to number theory, algebraic geometry, and mathematical physics. The specific topics covered include Hecke algebras, quantum groups, infinite-dimensional Lie algebras, quivers, modular representations, and Gromov-Witten invariants. The book is suitable for graduate students and researchers interested in representation theory.
https://magrudy-assets.storage.googleapis.com/9780821837016.jpg
93.450000 USD

Infinite-dimensional Aspects of Representation Theory and Applications

Paperback / softback
Book cover image
Paul Erdos was an amazing and prolific mathematician whose life as a world-wandering numerical nomad was legendary. He published almost 1500 scholarly papers before his death in 1996, and he probably thought more about math problems than anyone in history. Like a traveling salesman offering his thoughts as wares, Erdos ...
The Man Who Loved Only Numbers: The Story of Paul Erdos and the Search for Mathematical Truth
Paul Erdos was an amazing and prolific mathematician whose life as a world-wandering numerical nomad was legendary. He published almost 1500 scholarly papers before his death in 1996, and he probably thought more about math problems than anyone in history. Like a traveling salesman offering his thoughts as wares, Erdos would show up on the doorstep of one mathematician or another and announce, "My brain is open." After working through a problem, he'd move on to the next place, the next solution.Hoffman's book, like Sylvia Nasar's biography of John Nash, A Beautiful Mind, reveals a genius's life that transcended the merely quirky. But Erdos's brand of madness was joyful, unlike Nash's despairing schizophrenia. Erdos never tried to dilute his obsessive passion for numbers with ordinary emotional interactions, thus avoiding hurting the people around him, as Nash did. Oliver Sacks writes of Erdos: "A mathematical genius of the first order, Paul Erdos was totally obsessed with his subject--he thought and wrote mathematics for nineteen hours a day until the day he died. He traveled constantly, living out of a plastic bag, and had no interest in food, sex, companionship, art--all that is usually indispensable to a human life."The Man Who Loved Only Numbers is easy to love, despite his strangeness. It's hard not to have affection for someone who referred to children as "epsilons," from the Greek letter used to represent small quantities in mathematics; a man whose epitaph for himself read, "Finally I am becoming stupider no more"; and whose only really necessary tool to do his work was a quiet and open mind.Hoffman, who followed and spoke with Erdos over the last 10 years of his life, introduces us to an undeniably odd, yet pure and joyful, man who loved numbers more than he loved God--whom he referred to as SF, for Supreme Fascist. He was often misunderstood, and he certainly annoyed people sometimes, but Paul Erdos is no doubt missed. --Therese Littleton
https://magrudy-assets.storage.googleapis.com/9780786863624.jpg
29.400000 USD

The Man Who Loved Only Numbers: The Story of Paul Erdos and the Search for Mathematical Truth

by Paul Hoffman
Hardback
Book cover image
Have you ever wondered ... why elections often produce results that seem to be displeasing to many of the voters involved? Would you be surprised to learn that a perfectly fair election can produce an outcome that literally nobody likes? When voting, we often think about the candidates or proposals ...
Mathematics of Voting and Elections: A Hands-On Approach
Have you ever wondered ... why elections often produce results that seem to be displeasing to many of the voters involved? Would you be surprised to learn that a perfectly fair election can produce an outcome that literally nobody likes? When voting, we often think about the candidates or proposals in the election, but we rarely consider the procedures that we use to express our preferences and arrive at a collective decision. The Mathematics of Voting and Elections: A Hands-On Approach will help you discover answers to these and many other questions. Easily accessible to anyone interested in the subject, the book requires virtually no prior mathematical experience beyond basic arithmetic, and includes numerous examples and discussions regarding actual elections from politics and popular culture. It is recommended for researchers and advanced undergraduates interested in all areas of mathematics and is ideal for independent study.
https://magrudy-assets.storage.googleapis.com/9780821837986.jpg
79.03 USD

Mathematics of Voting and Elections: A Hands-On Approach

by Richard E. Klima, Jonathan K. Hodge
Paperback / softback
Book cover image
This book introduces students with diverse backgrounds to various types of mathematical analysis that are commonly needed in scientific computing. The subject of numerical analysis is treated from a mathematical point of view, offering a complete analysis of methods for scientific computing with appropriate motivations and careful proofs. In an ...
Numerical Analysis: Mathematics of Scientific Computing
This book introduces students with diverse backgrounds to various types of mathematical analysis that are commonly needed in scientific computing. The subject of numerical analysis is treated from a mathematical point of view, offering a complete analysis of methods for scientific computing with appropriate motivations and careful proofs. In an engaging and informal style, the authors demonstrate that many computational procedures and intriguing questions of computer science arise from theorems and proofs. Algorithms are presented in pseudocode, so that students can immediately write computer programs in standard languages or use interactive mathematical software packages. This book occasionally touches upon more advanced topics that are not usually contained in standard textbooks at this level.
https://magrudy-assets.storage.googleapis.com/9780821847886.jpg
179.46 USD

Numerical Analysis: Mathematics of Scientific Computing

by Ward Cheney, David Kincaid
Hardback
Book cover image
This is a comprehensive textbook on modern algebra written by an internationally renowned specialist. It covers material traditionally found in advanced undergraduate and basic graduate courses and presents it in a lucid style. The author includes almost no technically difficult proofs, and reflecting his point of view on mathematics, he ...
A Course in Algebra
This is a comprehensive textbook on modern algebra written by an internationally renowned specialist. It covers material traditionally found in advanced undergraduate and basic graduate courses and presents it in a lucid style. The author includes almost no technically difficult proofs, and reflecting his point of view on mathematics, he tries wherever possible to replace calculations and difficult deductions with conceptual proofs and to associate geometric images to algebraic objects. The effort spent on the part of students in absorbing these ideas will pay off when they turn to solving problems outside of this textbook.Another important feature is the presentation of most topics on several levels, allowing students to move smoothly from initial acquaintance with the subject to thorough study and a deeper understanding. Basic topics are included, such as algebraic structures, linear algebra, polynomials, and groups, as well as more advanced topics, such as affine and projective spaces, tensor algebra, Galois theory, Lie groups, and associative algebras and their representations. Some applications of linear algebra and group theory to physics are discussed. The book is written with extreme care and contains over 200 exercises and 70 figures. It is ideal as a textbook and also suitable for independent study for advanced undergraduates and graduate students.
https://magrudy-assets.storage.googleapis.com/9780821834138.jpg
64.580000 USD

A Course in Algebra

by Ernest Borisovich Vinberg
Paperback / softback
Book cover image
This book concentrates on the basic facts and ideas of the modern theory of linear elliptic and parabolic equations in Sobolev spaces. The main areas covered in this book are the first boundary-value problem for elliptic equations and the Cauchy problem for parabolic equations. In addition, other boundary-value problems such ...
Lectures on Elliptic and Parabolic Equations in Sobolev Spaces
This book concentrates on the basic facts and ideas of the modern theory of linear elliptic and parabolic equations in Sobolev spaces. The main areas covered in this book are the first boundary-value problem for elliptic equations and the Cauchy problem for parabolic equations. In addition, other boundary-value problems such as the Neumann or oblique derivative problems are briefly covered. As is natural for a textbook, the main emphasis is on organizing well-known ideas in a self-contained exposition. Among the topics included that are not usually covered in a textbook are a relatively recent development concerning equations with $\textsf{VMO}$ coefficients and the study of parabolic equations with coefficients measurable only with respect to the time variable. There are numerous exercises which help the reader better understand the material. After going through the book, the reader will have a good understanding of results available in the modern theory of partial differential equations and the technique used to obtain them. Prerequesites are basics of measure theory, the theory of $L p$ spaces, and the Fourier transform.
https://magrudy-assets.storage.googleapis.com/9780821846841.jpg
71.920000 USD
Hardback
Book cover image
Difference sets belong both to group theory and to combinatorics. Studying them requires tools from geometry, number theory, and representation theory. This book lays a foundation for these topics, including a primer on representations and characters of finite groups. It makes the research literature on difference sets accessible to students ...
Difference Sets: Connecting Algebra, Combinatorics, and Geometry
Difference sets belong both to group theory and to combinatorics. Studying them requires tools from geometry, number theory, and representation theory. This book lays a foundation for these topics, including a primer on representations and characters of finite groups. It makes the research literature on difference sets accessible to students who have studied linear algebra and abstract algebra, and it prepares them to do their own research. This text is suitable for an undergraduate capstone course, since it illuminates the many links among topics that the students have already studied. To this end, almost every chapter ends with a coda highlighting the main ideas and emphasising mathematical connections. This book can also be used for self-study by anyone interested in these connections and concrete examples. An abundance of exercises, varying from straightforward to challenging, invites the reader to solve puzzles, construct proofs, and investigate problems - by hand or on a computer. Hints and solutions are provided for selected exercises, and there is an extensive bibliography. The last chapter introduces a number of applications to real-world problems and offers suggestions for further reading. Both authors are experienced teachers who have successfully supervised undergraduate research on difference sets.
https://magrudy-assets.storage.googleapis.com/9780821891766.jpg
84.62 USD

Difference Sets: Connecting Algebra, Combinatorics, and Geometry

by Harriet S. Pollatsek, Emily H Moore
Paperback / softback
Book cover image
Gauss famously referred to mathematics as the queen of the sciences and to number theory as the queen of mathematics . This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q. Originating in the work of Gauss, ...
A Conversational Introduction to Algebraic Number Theory: Arithmetic Beyond Z
Gauss famously referred to mathematics as the queen of the sciences and to number theory as the queen of mathematics . This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q. Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three fundamental theorems : unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise way of measuring the failure of unique factorization. The book is based on the author's notes from a course delivered at the University of Georgia; pains have been taken to preserve the conversational style of the original lectures.
https://magrudy-assets.storage.googleapis.com/9781470436537.jpg
103.22 USD
Paperback / softback
Book cover image
Probability theory has become a convenient language and a useful tool in many areas of modern analysis. The main purpose of this book is to explore part of this connection concerning the relations between Brownian motion on a manifold and analytical aspects of differential geometry. A dominant theme of the ...
Stochastic Analysis on Manifolds
Probability theory has become a convenient language and a useful tool in many areas of modern analysis. The main purpose of this book is to explore part of this connection concerning the relations between Brownian motion on a manifold and analytical aspects of differential geometry. A dominant theme of the book is the probabilistic interpretation of the curvature of a manifold.The book begins with a brief review of stochastic differential equations on Euclidean space. After presenting the basics of stochastic analysis on manifolds, the author introduces Brownian motion on a Riemannian manifold and studies the effect of curvature on its behavior. He then applies Brownian motion to geometric problems and vice versa, using many well-known examples, e.g., short-time behavior of the heat kernel on a manifold and probabilistic proofs of the Gauss-Bonnet-Chem theorem and the Atiyah-Singer index theorem for Dirac operators. The book concludes with an introduction to stochastic analysis on the path space over a Riemannian manifold.
https://magrudy-assets.storage.googleapis.com/9780821808023.jpg
112.51 USD
Hardback
Book cover image
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In ...
Algebraic Curves and Riemann Surfaces
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking center stage.But the main examples come from projective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Duality Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves and cohomology are introduced as a unifying device in the latter chapters, so that their utility and naturalness are immediately obvious. Requiring a background of a one semester of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-semester course in complex variables or a year-long course in algebraic geometry.
https://magrudy-assets.storage.googleapis.com/9780821802687.jpg
108.680000 USD
Hardback
Book cover image
This book brings the beauty and fun of mathematics to the classroom. It offers serious mathematics in a lively, reader-friendly style. Included are exercises and many figures illustrating the main concepts. The first chapter talks about the theory of manifolds. It includes discussion of smoothness, differentiability, and analyticity, the idea ...
A Mathematical Gift, Volume 3: The Interplay Between Topology, Functions, Geometry, and Algebra
This book brings the beauty and fun of mathematics to the classroom. It offers serious mathematics in a lively, reader-friendly style. Included are exercises and many figures illustrating the main concepts. The first chapter talks about the theory of manifolds. It includes discussion of smoothness, differentiability, and analyticity, the idea of local coordinates and coordinate transformation, and a detailed explanation of the Whitney imbedding theorem (both in weak and in strong form).The second chapter discusses the notion of the area of a figure on the plane and the volume of a solid body in space. It includes the proof of the Bolyai-Gerwien theorem about scissors-congruent polynomials and Dehn's solution of the Third Hilbert Problem. This is the third volume originating from a series of lectures given at Kyoto University (Japan). It is suitable for classroom use for high school mathematics teachers and for undergraduate mathematics courses in the sciences and liberal arts. The first and second volumes are available as Volume 19 and Volume 20 in the AMS series, Mathematical World .
https://magrudy-assets.storage.googleapis.com/9780821832844.jpg
71.60 USD
Paperback / softback
Book cover image
Herve Jacquet is one of the founders of the modern theory of automorphic representations and their associated $L$-functions. This volume represents a selection of his most influential papers not already available in book form. The volume contains papers on the $L$-function attached to a pair of representations of the general ...
Collected Works of Herve Jacquet
Herve Jacquet is one of the founders of the modern theory of automorphic representations and their associated $L$-functions. This volume represents a selection of his most influential papers not already available in book form. The volume contains papers on the $L$-function attached to a pair of representations of the general linear group. Thus, it completes Jacquet's papers on the subject (joint with Shalika and Piatetski-Shapiro) that can be found in the volume of selected works of Piatetski-Shapiro. In particular, two often quoted papers of Jacquet and Shalika on the classification of automorphic representations and a historically important paper of Gelbart and Jacquet on the functorial transfer from $GL(2)$ to $GL(3)$ are included. Another series of papers pertains to the relative trace formula introduced by Jacquet. This is a variant of the standard trace formula which is used to study the period integrals of automorphic forms. Nearly complete results are obtained for the period of an automorphic form over a unitary group.
https://magrudy-assets.storage.googleapis.com/9780821853566.jpg
278.95 USD

Collected Works of Herve Jacquet

by Dorian Goldfeld
Hardback
Book cover image
Representation theory investigates the different ways in which a given algebraic object--such as a group or a Lie algebra--can act on a vector space. Besides being a subject of great intrinsic beauty, the theory enjoys the additional benefit of having applications in myriad contexts outside pure mathematics, including quantum field ...
A Tour of Representation Theory
Representation theory investigates the different ways in which a given algebraic object--such as a group or a Lie algebra--can act on a vector space. Besides being a subject of great intrinsic beauty, the theory enjoys the additional benefit of having applications in myriad contexts outside pure mathematics, including quantum field theory and the study of molecules in chemistry. Adopting a panoramic viewpoint, this book offers an introduction to four different flavors of representation theory: representations of algebras, groups, Lie algebras, and Hopf algebras. A separate part of the book is devoted to each of these areas and they are all treated in sufficient depth to enable and hopefully entice the reader to pursue research in representation theory. The book is intended as a textbook for a course on representation theory, which could immediately follow the standard graduate abstract algebra course, and for subsequent more advanced reading courses. Therefore, more than 350 exercises at various levels of difficulty are included. The broad range of topics covered will also make the text a valuable reference for researchers in algebra and related areas and a source for graduate and postgraduate students wishing to learn more about representation theory by self-study.
https://magrudy-assets.storage.googleapis.com/9781470436803.jpg
173.88 USD
Hardback
Page 1 of 40