Filter
(found 13267 products)
Book cover image
The Homework Practice Workbook contains two worksheets for every lesson in the Student Edition. This workbook helps students: Practice the skills of the lesson, Use their skills to solve word problems.
Geometry, Homework Practice Workbook
The Homework Practice Workbook contains two worksheets for every lesson in the Student Edition. This workbook helps students: Practice the skills of the lesson, Use their skills to solve word problems.
https://magrudy-assets.storage.googleapis.com/9780078908491.jpg
10.760000 USD

Geometry, Homework Practice Workbook

by McGraw-Hill
Paperback / softback
Book cover image
This book develops a novel approach to perturbative quantum field theory: starting with a perturbative formulation of classical field theory, quantization is achieved by means of deformation quantization of the underlying free theory and by applying the principle that as much of the classical structure as possible should be maintained. ...
From Classical Field Theory to Perturbative Quantum Field Theory
This book develops a novel approach to perturbative quantum field theory: starting with a perturbative formulation of classical field theory, quantization is achieved by means of deformation quantization of the underlying free theory and by applying the principle that as much of the classical structure as possible should be maintained. The resulting formulation of perturbative quantum field theory is a version of the Epstein-Glaser renormalization that is conceptually clear, mathematically rigorous and pragmatically useful for physicists. The connection to traditional formulations of perturbative quantum field theory is also elaborated on, and the formalism is illustrated in a wealth of examples and exercises.
https://magrudy-assets.storage.googleapis.com/9783030047375.jpg
146.990000 USD

From Classical Field Theory to Perturbative Quantum Field Theory

by Michael Dutsch
Hardback
Book cover image
The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) ...
Lattice Path Combinatorics and Applications
The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) on the life and mathematical work of leading researchers in lattice path combinatorics and beyond. There will be four or five expository articles in memory of Shreeram Shankar Abhyankar and Philippe Flajolet and honoring George Andrews and Lajos Takacs. There may be another brief article in memory of Professors Jagdish Narayan Srivastava and Joti Lal Jain. New research results include the kernel method developed by Flajolet and others for counting different classes of lattice paths continues to produce new results in counting lattice paths. The recent investigation of Fishburn numbers has led to interesting counting interpretations and a family of fascinating congruences. Formulas for new methods to obtain the number of Fq-rational points of Schubert varieties in Grassmannians continues to have research interest and will be presented here. Topics to be included are far reaching and will include lattice path enumeration, tilings, bijections between paths and other combinatoric structures, non-intersecting lattice paths, varieties, Young tableaux, partitions, enumerative combinatorics, discrete distributions, applications to queueing theory and other continuous time models, graph theory and applications. Many leading mathematicians who spoke at the conference from which this volume derives, are expected to send contributions including. This volume also presents the stimulating ideas of some exciting newcomers to the Lattice Path Combinatorics Conference series; The 8th Conference on Lattice Path Combinatorics and Applications provided opportunities for new collaborations; some of the products of these collaborations will also appear in this book. This book will have interest for researchers in lattice path combinatorics and enumerative combinatorics. This will include subsets of researchers in mathematics, statistics, operations research and computer science. The applications of the material covered in this edited volume extends beyond the primary audience to scholars interested queuing theory, graph theory, tiling, partitions, distributions, etc. An attractive bonus within our book is the collection of special articles describing the top recent researchers in this area of study and documenting the interesting history of who, when and how these beautiful combinatorial results were originally discovered.
https://magrudy-assets.storage.googleapis.com/9783030111014.jpg
125.990000 USD

Lattice Path Combinatorics and Applications

Hardback
Book cover image
This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization ...
Maximum Principles and Geometric Applications
This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter. In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on. Maximum Principles and Geometric Applications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.
https://magrudy-assets.storage.googleapis.com/9783319796055.jpg
157.490000 USD

Maximum Principles and Geometric Applications

by Marco Rigoli, Paolo Mastrolia, Luis J. Alias
Paperback / softback
Book cover image
Advanced Construction Mathematics covers the range of topics that a student must learn in order to achieve success in Level 3 and 4 mathematics for the Pearson BTEC National and BTEC HNC/HND in Construction, Building Services, and Civil Engineering. Packed with easy to follow examples, its 18 chapters cover algebra ...
Advanced Construction Mathematics
Advanced Construction Mathematics covers the range of topics that a student must learn in order to achieve success in Level 3 and 4 mathematics for the Pearson BTEC National and BTEC HNC/HND in Construction, Building Services, and Civil Engineering. Packed with easy to follow examples, its 18 chapters cover algebra (equations, transposition and evaluation of formulae), differentiation, integration, statistics and numerous other core concepts and their application in the construction/civil engineering field. The book explains technical processes before applying mathematical techniques to solve practical problems which gradually build in complexity. Each chapter contains self-test exercises and answers and numerous illustrations to simplify the essential maths required at Levels 3 and 4. The book is also a useful recap or primer for students on BSc or non-cognate MSc Construction and Civil Engineering degrees.
https://magrudy-assets.storage.googleapis.com/9780367002107.jpg
170.62 USD

Advanced Construction Mathematics

by Surinder Virdi
Hardback
Book cover image
Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem ...
An Invitation to Alexandrov Geometry: CAT(0) Spaces
Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard-Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.
https://magrudy-assets.storage.googleapis.com/9783030053116.jpg
73.490000 USD

An Invitation to Alexandrov Geometry: CAT(0) Spaces

by Anton Petrunin, Vitali Kapovitch, Stephanie Alexander
Paperback / softback
Book cover image
The origami introduced in this book is based on simple techniques. Some were previously known by origami artists and some were discovered by the author. Curved-Folding Origami Design shows a way to explore new area of origami composed of curved folds. Each technique is introduced in a step-by-step fashion, followed ...
Curved-Folding Origami Design
The origami introduced in this book is based on simple techniques. Some were previously known by origami artists and some were discovered by the author. Curved-Folding Origami Design shows a way to explore new area of origami composed of curved folds. Each technique is introduced in a step-by-step fashion, followed by some beautiful artwork examples. A commentary explaining the theory behind the technique is placed at the end of each chapter. Features Explains the techniques for designing curved-folding origami in seven chapters Contains many illustrations and photos (over 140 figures), with simple instructions Contains photos of 24 beautiful origami artworks, as well as their crease patterns Some basic theories behind the techniques are introduced
https://magrudy-assets.storage.googleapis.com/9780367180256.jpg
51.18 USD

Curved-Folding Origami Design

by Jun Mitani
Paperback / softback
Book cover image
This book on two-dimensional geometry uses a problem-solving approach to actively engage students in the learning process. The aim is to guide readers through the story of the subject, while giving them room to discover and partially construct the story themselves. The book bridges the study of plane geometry and ...
Two-Dimensional Geometries: A Problem-Solving Approach
This book on two-dimensional geometry uses a problem-solving approach to actively engage students in the learning process. The aim is to guide readers through the story of the subject, while giving them room to discover and partially construct the story themselves. The book bridges the study of plane geometry and the study of curves and surfaces of non-constant curvature in three-dimensional Euclidean space.
https://magrudy-assets.storage.googleapis.com/9781470447601.jpg
149.30 USD

Two-Dimensional Geometries: A Problem-Solving Approach

by C. Herbert Clemens
Hardback
Book cover image
This book features selected papers from The Seventh International Conference on Research and Education in Mathematics that was held in Kuala Lumpur, Malaysia from 25 - 27th August 2015. With chapters devoted to the most recent discoveries in mathematics and statistics and serve as a platform for knowledge and information ...
Recent Advances in Mathematical Sciences: Selected Papers from ICREM7 2015
This book features selected papers from The Seventh International Conference on Research and Education in Mathematics that was held in Kuala Lumpur, Malaysia from 25 - 27th August 2015. With chapters devoted to the most recent discoveries in mathematics and statistics and serve as a platform for knowledge and information exchange between experts from academic and industrial sectors, it covers a wide range of topics, including numerical analysis, fluid mechanics, operation research, optimization, statistics and game theory. It is a valuable resource for pure and applied mathematicians, statisticians, engineers and scientists, and provides an excellent overview of the latest research in mathematical sciences.
https://magrudy-assets.storage.googleapis.com/9789811091803.jpg
188.990000 USD

Recent Advances in Mathematical Sciences: Selected Papers from ICREM7 2015

Paperback / softback
Book cover image
This book aims to provide an overview of several topics in advanced differential geometry and Lie group theory, all of them stemming from mathematical problems in supersymmetric physical theories. It presents a mathematical illustration of the main development in geometry and symmetry theory that occurred under the fertilizing influence of ...
Advances in Geometry and Lie Algebras from Supergravity
This book aims to provide an overview of several topics in advanced differential geometry and Lie group theory, all of them stemming from mathematical problems in supersymmetric physical theories. It presents a mathematical illustration of the main development in geometry and symmetry theory that occurred under the fertilizing influence of supersymmetry/supergravity. The contents are mainly of mathematical nature, but each topic is introduced by historical information and enriched with motivations from high energy physics, which help the reader in getting a deeper comprehension of the subject.
https://magrudy-assets.storage.googleapis.com/9783030090050.jpg
157.490000 USD

Advances in Geometry and Lie Algebras from Supergravity

by Pietro Giuseppe Fre
Paperback / softback
Book cover image
This proceedings volume covers a range of research topics in algebra from the Southern Regional Algebra Conference (SRAC) that took place in March 2017. Presenting theory as well as computational methods, featured survey articles and research papers focus on ongoing research in algebraic geometry, ring theory, group theory, and associative ...
Advances in Algebra: SRAC 2017, Mobile, Alabama, USA, March 17-19
This proceedings volume covers a range of research topics in algebra from the Southern Regional Algebra Conference (SRAC) that took place in March 2017. Presenting theory as well as computational methods, featured survey articles and research papers focus on ongoing research in algebraic geometry, ring theory, group theory, and associative algebras. Topics include algebraic groups, combinatorial commutative algebra, computational methods for representations of groups and algebras, group theory, Hopf-Galois theory, hypergroups, Lie superalgebras, matrix analysis, spherical and algebraic spaces, and tropical algebraic geometry. Since 1988, SRAC has been an important event for the algebra research community in the Gulf Coast Region and surrounding states, building a strong network of algebraists that fosters collaboration in research and education. This volume is suitable for graduate students and researchers interested in recent findings in computational and theoretical methods in algebra and representation theory.
https://magrudy-assets.storage.googleapis.com/9783030115203.jpg
188.990000 USD

Advances in Algebra: SRAC 2017, Mobile, Alabama, USA, March 17-19

Hardback
Book cover image
This book is written in a style that uncovers the mathematical theories buried in our everyday lives such as examples from patterns that appear in nature, art, and traditional crafts, and in mathematical mechanisms in techniques used by architects. The authors believe that through dialogues between students and mathematicians, readers ...
Treks into Intuitive Geometry: The World of Polygons and Polyhedra
This book is written in a style that uncovers the mathematical theories buried in our everyday lives such as examples from patterns that appear in nature, art, and traditional crafts, and in mathematical mechanisms in techniques used by architects. The authors believe that through dialogues between students and mathematicians, readers may discover the processes by which the founders of the theories came to their various conclusions-their trials, errors, tribulations, and triumphs. The goal is for readers to refine their mathematical sense of how to find good questions and how to grapple with these problems. Another aim is to provide enjoyment in the process of applying mathematical rules to beautiful art and design by examples that highlight the wonders and mysteries from our daily lives. To fulfill these aims, this book deals with the latest unique and beautiful results in polygons and polyhedra and the dynamism of geometrical research history that can be found around us. The term intuitive geometry was coined by Laszlo Fejes Toth to refer to the kind of geometry which, in Hilbert's words, can be explained to and appeal to the man on the street. This book allows people to enjoy intuitive geometry informally and instinctively. It does not require more than a high school level of knowledge but calls for a sense of wonder, intuition, and mathematical maturity.
https://magrudy-assets.storage.googleapis.com/9784431567097.jpg
62.990000 USD

Treks into Intuitive Geometry: The World of Polygons and Polyhedra

by Kiyoko Matsunaga, Jin Akiyama
Paperback / softback
Book cover image
The book provides an overview of the state-of-the-art of map construction algorithms, which use tracking data in the form of trajectories to generate vector maps. The most common trajectory type is GPS-based trajectories. It introduces three emerging algorithmic categories, outlines their general algorithmic ideas, and discusses three representative algorithms in ...
Map Construction Algorithms
The book provides an overview of the state-of-the-art of map construction algorithms, which use tracking data in the form of trajectories to generate vector maps. The most common trajectory type is GPS-based trajectories. It introduces three emerging algorithmic categories, outlines their general algorithmic ideas, and discusses three representative algorithms in greater detail. To quantify map construction algorithms, the authors include specific datasets and evaluation measures. The datasets, source code of map construction algorithms and evaluation measures are publicly available on http://www.mapconstruction.org. The web site serves as a repository for map construction data and algorithms and researchers can contribute by uploading their own code and benchmark data. Map Construction Algorithms is an excellent resource for professionals working in computational geometry, spatial databases, and GIS. Advanced-level students studying computer science, geography and mathematics will also find this book a useful tool.
https://magrudy-assets.storage.googleapis.com/9783319797434.jpg
104.990000 USD

Map Construction Algorithms

by Carola Wenk, Dieter Pfoser, Sophia Karagiorgou, Mahmuda Ahmed
Paperback / softback
Book cover image
This book collects various perspectives, contributed by both mathematicians and physicists, on the B-model and its role in mirror symmetry. Mirror symmetry is an active topic of research in both the mathematics and physics communities, but among mathematicians, the A-model half of the story remains much better-understood than the B-model. ...
B-Model Gromov-Witten Theory
This book collects various perspectives, contributed by both mathematicians and physicists, on the B-model and its role in mirror symmetry. Mirror symmetry is an active topic of research in both the mathematics and physics communities, but among mathematicians, the A-model half of the story remains much better-understood than the B-model. This book aims to address that imbalance. It begins with an overview of several methods by which mirrors have been constructed, and from there, gives a thorough account of the BCOV B-model theory from a physical perspective; this includes the appearance of such phenomena as the holomorphic anomaly equation and connections to number theory via modularity. Following a mathematical exposition of the subject of quantization, the remainder of the book is devoted to the B-model from a mathematician's point-of-view, including such topics as polyvector fields and primitive forms, Givental's ancestor potential, and integrable systems.
https://magrudy-assets.storage.googleapis.com/9783319942193.jpg
146.990000 USD

B-Model Gromov-Witten Theory

Hardback
Book cover image
A Fields medalist recounts his lifelong transnational effort to uncover the geometric shape-the Calabi-Yau manifold-that may store the hidden dimensions of our universe. Harvard geometer and Fields medalist Shing-Tung Yau has provided a mathematical foundation for string theory, offered new insights into black holes, and mathematically demonstrated the stability of ...
The Shape of a Life: One Mathematician's Search for the Universe's Hidden Geometry
A Fields medalist recounts his lifelong transnational effort to uncover the geometric shape-the Calabi-Yau manifold-that may store the hidden dimensions of our universe. Harvard geometer and Fields medalist Shing-Tung Yau has provided a mathematical foundation for string theory, offered new insights into black holes, and mathematically demonstrated the stability of our universe. In this autobiography, Yau reflects on his improbable journey to becoming one of the world's most distinguished mathematicians. Beginning with an impoverished childhood in China and Hong Kong, Yau takes readers through his doctoral studies at Berkeley during the height of the Vietnam War protests, his Fields Medal-winning proof of the Calabi conjecture, his return to China, and his pioneering work in geometric analysis. This new branch of geometry, which Yau built up with his friends and colleagues, has paved the way for solutions to several important and previously intransigent problems. With complicated ideas explained for a broad audience, this book offers readers not only insights into the life of an eminent mathematician, but also an accessible way to understand advanced and highly abstract concepts in mathematics and theoretical physics.
https://magrudy-assets.storage.googleapis.com/9780300235906.jpg
34.12 USD

The Shape of a Life: One Mathematician's Search for the Universe's Hidden Geometry

by Steve Nadis, Shing-Tung Yau
Hardback
Book cover image
This book explains the foundations of holomorphic curve theory in contact geometry. By using a particular geometric problem as a starting point the authors guide the reader into the subject. As such it ideally serves as preparation and as entry point for a deeper study of the analysis underlying symplectic ...
Holomorphic Curves and Global Questions in Contact Geometry
This book explains the foundations of holomorphic curve theory in contact geometry. By using a particular geometric problem as a starting point the authors guide the reader into the subject. As such it ideally serves as preparation and as entry point for a deeper study of the analysis underlying symplectic field theory. An introductory chapter sets the stage explaining some of the basic notions of contact geometry and the role of holomorphic curves in the field. The authors proceed to the heart of the material providing a detailed exposition about finite energy planes and periodic orbits (chapter 4) to disk filling methods and applications (chapter 9).The material is self-contained. It includes a number of technical appendices giving the geometric analysis foundations for the main results, so that one may easily follow the discussion. Graduate students as well as researchers who want to learn the basics of this fast developing theory will highly appreciate this accessible approach taken by the authors.
https://magrudy-assets.storage.googleapis.com/9783030118020.jpg
83.990000 USD

Holomorphic Curves and Global Questions in Contact Geometry

by Helmut Hofer, Casim Abbas
Hardback
Book cover image
This book explains the notion of Brakke's mean curvature flow and its existence and regularity theories without assuming familiarity with geometric measure theory. The focus of study is a time-parameterized family of k-dimensional surfaces in the n-dimensional Euclidean space (1 k < n). The family is the mean curvature flow ...
Brakke's Mean Curvature Flow: An Introduction
This book explains the notion of Brakke's mean curvature flow and its existence and regularity theories without assuming familiarity with geometric measure theory. The focus of study is a time-parameterized family of k-dimensional surfaces in the n-dimensional Euclidean space (1 k < n). The family is the mean curvature flow if the velocity of motion of surfaces is given by the mean curvature at each point and time. It is one of the simplest and most important geometric evolution problems with a strong connection to minimal surface theory. In fact, equilibrium of mean curvature flow corresponds precisely to minimal surface. Brakke's mean curvature flow was first introduced in 1978 as a mathematical model describing the motion of grain boundaries in an annealing pure metal. The grain boundaries move by the mean curvature flow while retaining singularities such as triple junction points. By using a notion of generalized surface called a varifold from geometric measure theory which allows the presence of singularities, Brakke successfully gave it a definition and presented its existence and regularity theories. Recently, the author provided a complete proof of Brakke's existence and regularity theorems, which form the content of the latter half of the book. The regularity theorem is also a natural generalization of Allard's regularity theorem, which is a fundamental regularity result for minimal surfaces and for surfaces with bounded mean curvature. By carefully presenting a minimal amount of mathematical tools, often only with intuitive explanation, this book serves as a good starting point for the study of this fascinating object as well as a comprehensive introduction to other important notions from geometric measure theory.
https://magrudy-assets.storage.googleapis.com/9789811370748.jpg
62.990000 USD

Brakke's Mean Curvature Flow: An Introduction

by Yoshihiro Tonegawa
Paperback / softback
Book cover image
This introductory book offers a unique and unified overview of symplectic geometry, highlighting the differential properties of symplectic manifolds. It consists of six chapters: Some Algebra Basics, Symplectic Manifolds, Cotangent Bundles, Symplectic G-spaces, Poisson Manifolds, and A Graded Case, concluding with a discussion of the differential properties of graded symplectic ...
Introduction to Symplectic Geometry
This introductory book offers a unique and unified overview of symplectic geometry, highlighting the differential properties of symplectic manifolds. It consists of six chapters: Some Algebra Basics, Symplectic Manifolds, Cotangent Bundles, Symplectic G-spaces, Poisson Manifolds, and A Graded Case, concluding with a discussion of the differential properties of graded symplectic manifolds of dimensions (0,n). It is a useful reference resource for students and researchers interested in geometry, group theory, analysis and differential equations.This book is also inspiring in the emerging field of Geometric Science of Information, in particular the chapter on Symplectic G-spaces, where Jean-Louis Koszul develops Jean-Marie Souriau's tools related to the non-equivariant case of co-adjoint action on Souriau's moment map through Souriau's Cocycle, opening the door to Lie Group Machine Learning with Souriau-Fisher metric.
https://magrudy-assets.storage.googleapis.com/9789811339868.jpg
78.740000 USD

Introduction to Symplectic Geometry

by Yi Ming Zou, Jean-Louis Koszul
Hardback
Book cover image
This book collects independent contributions on current developments in quantum information theory, a very interdisciplinary field at the intersection of physics, computer science and mathematics. Making intense use of the most advanced concepts from each discipline, the authors give in each contribution pedagogical introductions to the main concepts underlying their ...
Quantum Physics and Geometry
This book collects independent contributions on current developments in quantum information theory, a very interdisciplinary field at the intersection of physics, computer science and mathematics. Making intense use of the most advanced concepts from each discipline, the authors give in each contribution pedagogical introductions to the main concepts underlying their present research and present a personal perspective on some of the most exciting open problems. Keeping this diverse audience in mind, special efforts have been made to ensure that the basic concepts underlying quantum information are covered in an understandable way for mathematical readers, who can find there new open challenges for their research. At the same time, the volume can also be of use to physicists wishing to learn advanced mathematical tools, especially of differential and algebraic geometric nature.
https://magrudy-assets.storage.googleapis.com/9783030061210.jpg
52.490000 USD

Quantum Physics and Geometry

Paperback / softback
Book cover image
Volume of geometric objects plays an important role in applied and theoretical mathematics. This is particularly true in the relatively new branch of discrete geometry, where volume is often used to find new topics for research. Volumetric Discrete Geometry demonstrates the recent aspects of volume, introduces problems related to it, ...
Volumetric Discrete Geometry
Volume of geometric objects plays an important role in applied and theoretical mathematics. This is particularly true in the relatively new branch of discrete geometry, where volume is often used to find new topics for research. Volumetric Discrete Geometry demonstrates the recent aspects of volume, introduces problems related to it, and presents methods to apply it to other geometric problems. Part I of the text consists of survey chapters of selected topics on volume and is suitable for advanced undergraduate students. Part II has chapters of selected proofs of theorems stated in Part I and is oriented for graduate level students wishing to learn about the latest research on the topic. Chapters can be studied independently from each other. Provides a list of 30 open problems to promote research Features more than 60 research exercises Ideally suited for researchers and students of combinatorics, geometry and discrete mathematics
https://magrudy-assets.storage.googleapis.com/9780367223755.jpg
163.80 USD

Volumetric Discrete Geometry

by Zsolt Langi, Karoly Bezdek
Hardback
Book cover image
Advanced Construction Mathematics covers the range of topics that a student must learn in order to achieve success in Level 3 and 4 mathematics for the Pearson BTEC National and BTEC HNC/HND in Construction, Building Services, and Civil Engineering. Packed with easy to follow examples, its 18 chapters cover algebra ...
Advanced Construction Mathematics
Advanced Construction Mathematics covers the range of topics that a student must learn in order to achieve success in Level 3 and 4 mathematics for the Pearson BTEC National and BTEC HNC/HND in Construction, Building Services, and Civil Engineering. Packed with easy to follow examples, its 18 chapters cover algebra (equations, transposition and evaluation of formulae), differentiation, integration, statistics and numerous other core concepts and their application in the construction/civil engineering field. The book explains technical processes before applying mathematical techniques to solve practical problems which gradually build in complexity. Each chapter contains self-test exercises and answers and numerous illustrations to simplify the essential maths required at Levels 3 and 4. The book is also a useful recap or primer for students on BSc or non-cognate MSc Construction and Civil Engineering degrees.
https://magrudy-assets.storage.googleapis.com/9780367002138.jpg
56.29 USD

Advanced Construction Mathematics

by Surinder Virdi
Paperback / softback
Book cover image
The subject of conformal mappings is a major part of geometric function theory that gained prominence after the publication of the Riemann mapping theorem - for every simply connected domain of the extended complex plane there is a univalent and meromorphic function that maps such a domain conformally onto the ...
Handbook of Conformal Mappings and Applications
The subject of conformal mappings is a major part of geometric function theory that gained prominence after the publication of the Riemann mapping theorem - for every simply connected domain of the extended complex plane there is a univalent and meromorphic function that maps such a domain conformally onto the unit disk. The Handbook of Conformal Mappings and Applications is a compendium of at least all known conformal maps to date, with diagrams and description, and all possible applications in different scientific disciplines, such as: fluid flows, heat transfer, acoustics, electromagnetic fields as static fields in electricity and magnetism, various mathematical models and methods, including solutions of certain integral equations.
https://magrudy-assets.storage.googleapis.com/9781138748477.jpg
314.950000 USD

Handbook of Conformal Mappings and Applications

by Prem K. Kythe
Hardback
Book cover image
A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a ...
Weil's Conjecture for Function Fields: Volume I (AMS-199)
A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting -adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors. Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
https://magrudy-assets.storage.googleapis.com/9780691182148.jpg
98.96 USD

Weil's Conjecture for Function Fields: Volume I (AMS-199)

by Jacob Lurie, Dennis Gaitsgory
Paperback / softback
Book cover image
Outer billiards provides a toy model for planetary motion and exhibits intricate and mysterious behavior even for seemingly simple examples. It is a dynamical system in which a particle in the plane moves around the outside of a convex shape according to a scheme that is reminiscent of ordinary billiards. ...
The Plaid Model: (AMS-198)
Outer billiards provides a toy model for planetary motion and exhibits intricate and mysterious behavior even for seemingly simple examples. It is a dynamical system in which a particle in the plane moves around the outside of a convex shape according to a scheme that is reminiscent of ordinary billiards. The Plaid Model, which is a self-contained sequel to Richard Schwartz's Outer Billiards on Kites, provides a combinatorial model for orbits of outer billiards on kites. Schwartz relates these orbits to such topics as polytope exchange transformations, renormalization, continued fractions, corner percolation, and the Truchet tile system. The combinatorial model, called the plaid model, has a self-similar structure that blends geometry and elementary number theory. The results were discovered through computer experimentation and it seems that the conclusions would be extremely difficult to reach through traditional mathematics. The book includes an extensive computer program that allows readers to explore the materials interactively and each theorem is accompanied by a computer demonstration.
https://magrudy-assets.storage.googleapis.com/9780691181370.jpg
216.70 USD

The Plaid Model: (AMS-198)

by Richard Evan Schwartz
Hardback
Book cover image
Outer billiards provides a toy model for planetary motion and exhibits intricate and mysterious behavior even for seemingly simple examples. It is a dynamical system in which a particle in the plane moves around the outside of a convex shape according to a scheme that is reminiscent of ordinary billiards. ...
The Plaid Model: (AMS-198)
Outer billiards provides a toy model for planetary motion and exhibits intricate and mysterious behavior even for seemingly simple examples. It is a dynamical system in which a particle in the plane moves around the outside of a convex shape according to a scheme that is reminiscent of ordinary billiards. The Plaid Model, which is a self-contained sequel to Richard Schwartz's Outer Billiards on Kites, provides a combinatorial model for orbits of outer billiards on kites. Schwartz relates these orbits to such topics as polytope exchange transformations, renormalization, continued fractions, corner percolation, and the Truchet tile system. The combinatorial model, called the plaid model, has a self-similar structure that blends geometry and elementary number theory. The results were discovered through computer experimentation and it seems that the conclusions would be extremely difficult to reach through traditional mathematics. The book includes an extensive computer program that allows readers to explore the materials interactively and each theorem is accompanied by a computer demonstration.
https://magrudy-assets.storage.googleapis.com/9780691181387.jpg
98.96 USD

The Plaid Model: (AMS-198)

by Richard Evan Schwartz
Paperback / softback
Book cover image
A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a ...
Weil's Conjecture for Function Fields: Volume I (AMS-199)
A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting -adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors. Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
https://magrudy-assets.storage.googleapis.com/9780691182131.jpg
173.250000 USD

Weil's Conjecture for Function Fields: Volume I (AMS-199)

by Jacob Lurie, Dennis Gaitsgory
Hardback
Book cover image
Charles Lutwidge Dodgson is best known for his 'Alice' books, Alice's Adventures in Wonderland and Through the Looking-Glass, written under his pen name of Lewis Carroll. Yet, whilst lauded for his work in children's fiction and his pioneering work in the world of Victorian photography, his everyday job was a ...
The Mathematical World of Charles L. Dodgson (Lewis Carroll)
Charles Lutwidge Dodgson is best known for his 'Alice' books, Alice's Adventures in Wonderland and Through the Looking-Glass, written under his pen name of Lewis Carroll. Yet, whilst lauded for his work in children's fiction and his pioneering work in the world of Victorian photography, his everyday job was a lecturer in Mathematics at Christ Church, Oxford University. The Mathematical World of Charles L. Dodgson (Lewis Carroll) explores the academic background behind this complex individual, outlining his mathematical life, describing his writings in geometry, algebra, logic, the theory of voting, and recreational mathematics, before going on to discuss his mathematical legacy. This is the first academic work that collects the research on Dodgson's wide-ranging mathematical achievements into a single practical volume. Much material appears here for the first time, such as Dodgson's personal letters and drawings, as well as the results of recent investigations into the life and work of Dodgson. Complementing this are many illustrations, both historical and explanatory, as well as a full mathematical bibliography of Dodgson's mathematical publications.
https://magrudy-assets.storage.googleapis.com/9780198817000.jpg
51.18 USD

The Mathematical World of Charles L. Dodgson (Lewis Carroll)

Hardback
Book cover image
This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well. The book begins by studying individual smooth algebraic ...
Algebraic Curves: Towards Moduli Spaces
This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well. The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford, was that curves with only mild singularities form smooth compact moduli spaces. An unexpected byproduct of this discovery was the realization that the analysis of more complex curve singularities is not a necessary step in understanding the geometry of the moduli spaces. The book does not use the sophisticated machinery of modern algebraic geometry, and most classical objects related to curves - such as Jacobian, space of holomorphic differentials, the Riemann-Roch theorem, and Weierstrass points - are treated at a basic level that does not require a profound command of algebraic geometry, but which is sufficient for extending them to vector bundles and other geometric objects associated to moduli spaces. Nevertheless, it offers clear information on the construction of the moduli spaces, and provides readers with tools for practical operations with this notion. Based on several lecture courses given by the authors at the Independent University of Moscow and Higher School of Economics, the book also includes a wealth of problems, making it suitable not only for individual research, but also as a textbook for undergraduate and graduate coursework
https://magrudy-assets.storage.googleapis.com/9783030029425.jpg
78.740000 USD

Algebraic Curves: Towards Moduli Spaces

by Victor V. Prasolov, Sergei K. Lando, Maxim E. Kazaryan
Hardback
Book cover image
An exploration of mathematical style through 99 different proofs of the same theorem This book offers a multifaceted perspective on mathematics by demonstrating 99 different proofs of the same theorem. Each chapter solves an otherwise unremarkable equation in distinct historical, formal, and imaginative styles that range from Medieval, Topological, and ...
99 Variations on a Proof
An exploration of mathematical style through 99 different proofs of the same theorem This book offers a multifaceted perspective on mathematics by demonstrating 99 different proofs of the same theorem. Each chapter solves an otherwise unremarkable equation in distinct historical, formal, and imaginative styles that range from Medieval, Topological, and Doggerel to Chromatic, Electrostatic, and Psychedelic. With a rare blend of humor and scholarly aplomb, Philip Ording weaves these variations into an accessible and wide-ranging narrative on the nature and practice of mathematics. Inspired by the experiments of the Paris-based writing group known as the Oulipo--whose members included Raymond Queneau, Italo Calvino, and Marcel Duchamp--Ording explores new ways to examine the aesthetic possibilities of mathematical activity. 99 Variations on a Proof is a mathematical take on Queneau's Exercises in Style, a collection of 99 retellings of the same story, and it draws unexpected connections to everything from mysticism and technology to architecture and sign language. Through diagrams, found material, and other imagery, Ording illustrates the flexibility and creative potential of mathematics despite its reputation for precision and rigor. Readers will gain not only a bird's-eye view of the discipline and its major branches but also new insights into its historical, philosophical, and cultural nuances. Readers, no matter their level of expertise, will discover in these proofs and accompanying commentary surprising new aspects of the mathematical landscape.
https://magrudy-assets.storage.googleapis.com/9780691158839.jpg
34.12 USD

99 Variations on a Proof

by Philip Ording
Hardback
Book cover image
This English edition of Yuri I. Manin's well-received lecture notes provides a concise but extremely lucid exposition of the basics of algebraic geometry and sheaf theory. The lectures were originally held in Moscow in the late 1960s, and the corresponding preprints were widely circulated among Russian mathematicians. This book will ...
Introduction to the Theory of Schemes
This English edition of Yuri I. Manin's well-received lecture notes provides a concise but extremely lucid exposition of the basics of algebraic geometry and sheaf theory. The lectures were originally held in Moscow in the late 1960s, and the corresponding preprints were widely circulated among Russian mathematicians. This book will be of interest to students majoring in algebraic geometry and theoretical physics (high energy physics, solid body, astrophysics) as well as to researchers and scholars in these areas. This is an excellent introduction to the basics of Grothendieck's theory of schemes; the very best first reading about the subject that I am aware of. I would heartily recommend every grad student who wants to study algebraic geometry to read it prior to reading more advanced textbooks. - Alexander Beilinson
https://magrudy-assets.storage.googleapis.com/9783030089627.jpg
73.490000 USD

Introduction to the Theory of Schemes

by Yuri I. Manin
Paperback / softback
Page 1 of 40