Sodium-calcium Exchange and the Plasma Membrane Ca2+-atpase in Cell Function: Fifth International Conference

Ca2+ homeostasis and the plasma membrane Na+/Ca2+ exchanger are vital to many cellular functions and physiological processes. This volume, which is the proceedings of the fifth in a series of international conferences, includes contributions that merge molecular biology, biochemistry, biophysics, and physiology, providing novel insights that significantly advance our understanding of Na+/Ca2+ exchanger in areas ranging from molecular mechanisms to the involvement in human disease. Several important themes are addressed: (1) structure-function relationships of the exchanger; (2) regulation of the exchanger; (3) Na/Ca exchanger gene regulation; (4) cellular location and targeting of the exchanger; (5) NC(K)X and PMCA KO mice; (6) Na/Ca exchanger interactions with other proteins; (7) Na/Ca exchange in cardiac function; (8) Na/Ca exchange in neuronal function; (9) Ca2+-extruding mechanisms and apoptosis; (10) Na/Ca exchange in smooth muscle, kidney, and endocrine function; (11) Na/Ca exchange inhibitors: therapeutic opportunities. Experts in the field of the plasma membrane Ca2+-ATPase (PMCA) have also contributed. The rate of progress in this field has been rapidly increasing, and new concepts have emerged regarding the relation between molecular structure and physiological function. New ideas on physiological modes of regulation have been increasingly testable through the use of transgenic animal models. This volume and the conference that preceded it continue the tradition of sharing information to fuel new advances in this exciting and important area of research. NOTE: Annals volumes are available for sale as individual books or as a journal. For information on institutional journal subscriptions, please visit ACADEMY MEMBERS: Please contact the New York Academy of Sciences directly to place your order ( Members of the New York Academy of Science receive full-text access to the Annals online and discounts on print volumes. Please visit for more information about becoming a member