Principal Currents for a Pair of Unitary Operators

Principal currents were invented to provide a non commutative spectral theory in which there is still significant localization. These currents are often integral and are associated with a vector field and an integer-valued weight which plays the role of a multi-operator index. The study of principal currents involves scattering theory, new geometry associated with operator algebras, defect spaces associated with Wiener-Hopf and other integral operators, and the dilation theory of contraction operators. This monograph explores the metric geometry of such currents for a pair of unitary operators and certain associated contraction operators. Applications to Toeplitz, singular integral, and differential operators are included.