Physics of Highly-Ionized Atoms

Sold by Ingram

This product may not be approved for your region.
  • Free Shipping

    On orders of AED 100 or more. Standard delivery within 5-15 days.
  • Free Reserve & Collect

    Reserve & Collect from Magrudy's or partner stores accross the UAE.
  • Cash On Delivery

    Pay when your order arrives.
  • Free returns

    See more about our return policy.
The progress in the physics of highly-ionized atoms since the last NATO sponsored ASI on this subject in 1982 has been enormous. New accelerator facilities capable of extending the range of highly-ionized ions to very high-Z have come on line or are about to be completed. We note particularly the GANIL accelerator in Caen, France, the Michigan State Superconducting Cyclotrons in East Lansing both of which are currently operating and the SIS Accelerator in Darmstadt, FRG which is scheduled to accelerate beam in late 1989. Progress i~ low-energy ion production has been equally dramatic. The Lawrence Livermore Lab EBIT device has produced neon-like gold and there has been continued improvement in ECR and EBIS sources. The scientific developments in this field have kept pace with the technical developments. New theoretical methods for evaluating relativistic and QED effects have made possible highly-precise calcula- tions of energy levels in one-and two-electron ions at high-Z. The calculations are based on the MCDF method and the variational method and will be subject to rigorous experimental tests. On the experimental side, precision x-ray and UV measurements have probed the Lamb shift in the one and two electron ions up to Z=36 with increasing precision.