Sold by Ingram

This product may not be approved for your region.
Hardback
  • Free Shipping

    On orders of AED 100 or more. Standard delivery within 5-15 days.
  • Free Reserve & Collect

    Reserve & Collect from Magrudy's or partner stores accross the UAE.
  • Cash On Delivery

    Pay when your order arrives.
  • Free returns

    See more about our return policy.
A thorough, accessible, and rigorous presentation of the central theorems of mathematical logic ...ideal for advanced students of mathematics, computer science, and logic Logic of Mathematics combines a full-scale introductory course in mathematical logic and model theory with a range of specially selected, more advanced theorems. Using a strict mathematical approach, this is the only book available that contains complete and precise proofs of all of these important theorems: Godel's theorems of completeness and incompleteness The independence of Goodstein's theorem from Peano arithmetic Tarski's theorem on real closed fields Matiyasevich's theorem on diophantine formulas Logic of Mathematics also features: Full coverage of model theoretical topics such as definability, compactness, ultraproducts, realization, and omission of types Clear, concise explanations of all key concepts, from Boolean algebras to Skolem-Lowenheim constructions and other topics Carefully chosen exercises for each chapter, plus helpful solution hints At last, here is a refreshingly clear, concise, and mathematically rigorous presentation of the basic concepts of mathematical logic-requiring only a standard familiarity with abstract algebra. Employing a strict mathematical approach that emphasizes relational structures over logical language, this carefully organized text is divided into two parts, which explain the essentials of the subject in specific and straightforward terms. Part I contains a thorough introduction to mathematical logic and model theory-including a full discussion of terms, formulas, and other fundamentals, plus detailed coverage of relational structures and Boolean algebras, Godel's completeness theorem, models of Peano arithmetic, and much more. Part II focuses on a number of advanced theorems that are central to the field, such as Godel's first and second theorems of incompleteness, the independence proof of Goodstein's theorem from Peano arithmetic, Tarski's theorem on real closed fields, and others. No other text contains complete and precise proofs of all of these theorems. With a solid and comprehensive program of exercises and selected solution hints, Logic of Mathematics is ideal for classroom use-the perfect textbook for advanced students of mathematics, computer science, and logic.