Fixed Point Theory and Its Applications: International Congress of Mathematicians

Series: Contemporary Mathematics (No. 72)
Fixed point theory touches on many areas of mathematics, such as general topology, algebraic topology, nonlinear functional analysis, and ordinary and partial differential equations and serves as a useful tool in applied mathematics. This book represents the proceedings of an informal three-day seminar held during the International Congress of Mathematicians in Berkeley in 1986. Bringing together topologists and analysts concerned with the study of fixed points of continuous functions, the seminar provided a forum for presentation of recent developments in several different areas. The topics covered include both topological fixed point theory from both the algebraic and geometric viewpoints, the fixed point theory of nonlinear operators on normed linear spaces and its applications, and the study of solutions of ordinary and partial differential equations by fixed point theory methods.Because the papers range from broad expositions to specialized research papers, the book provides readers with a good overview of the subject as well as a more detailed look at some specialized recent advances.