Filter
(found 13 products)
Book cover image
Here is a textbook for senior undergraduate and graduate level students that offers a novel and systematic look into the dynamics of MEMS. It includes numerous solved examples together with the proposed problems. The material to be found here will also be of interest to researchers with a non-mechanical background. ...
Dynamics of Microelectromechanical Systems
Here is a textbook for senior undergraduate and graduate level students that offers a novel and systematic look into the dynamics of MEMS. It includes numerous solved examples together with the proposed problems. The material to be found here will also be of interest to researchers with a non-mechanical background. The book focuses on the mechanical domain, specifically the dynamic sub-domain, and provides an in-depth treatment of problems that involve reliable modeling, analysis and design.
https://magrudy-assets.storage.googleapis.com/9780387368009.jpg
125.990000 USD

Dynamics of Microelectromechanical Systems

by Nicolae Lobontiu
Hardback
Book cover image
A rigorous approach that employs structural/ mechanical design principles to solve the reliability problems in Microresonators.Resonators act as a frequency reference or to filter specific frequencies. Used in such products as cell phones or computers, resonators will allow the user to take advantage of high bandwidths to process and send ...
Mechanical Design of Microresonators
A rigorous approach that employs structural/ mechanical design principles to solve the reliability problems in Microresonators.Resonators act as a frequency reference or to filter specific frequencies. Used in such products as cell phones or computers, resonators will allow the user to take advantage of high bandwidths to process and send greater amounts of data. When used in medical devises such as MRIs they can detect microorganisms and biological molecules. The dilemma that Researcher face when building these micro resonators is that the smaller a resonator gets the less reliable it becomes. Based on his research at Cornell University, the author employs current modeling and fabrication technologies to bring a solution to this seemingly insurmountable problem one step closer.
https://magrudy-assets.storage.googleapis.com/9780071455381.jpg
198.450000 USD

Mechanical Design of Microresonators

by Nicolae Lobontiu
Hardback
Book cover image
This book offers a comprehensive coverage to the mechanics of microelectromechanical systems (MEMS), which are analyzed from a mechanical engineer's viewpoint as devices that transform an input form of energy, such as thermal, electrostatic, electromagnetic or optical, into output mechanical motion (in the case of actuation) or that can operate ...
Mechanics of Microelectromechanical Systems
This book offers a comprehensive coverage to the mechanics of microelectromechanical systems (MEMS), which are analyzed from a mechanical engineer's viewpoint as devices that transform an input form of energy, such as thermal, electrostatic, electromagnetic or optical, into output mechanical motion (in the case of actuation) or that can operate with the reversed functionality (as in sensors) and convert an external stimulus, such as mechanical motion, into (generally) electric energy. The impetus of this proposal stems from the perception that such an approach might contribute to a more solid understanding of the principles governing the mechanics of MEMS, and would hopefully enhance the efficiency of modeling and designing reliable and desirably-optimized microsystems. The work represents an attempt at both extending and deepening the mechanical-based approach to MEMS in the static domain by providing simple, yet reliable tools that are applicable to micromechanism design through current fabrication technologies. Lumped-parameter stiffness and compliance properties of flexible components are derived both analytically (as closed-form solutions) and as simplified (engineering) formulas. Also studied are the principal means of actuation/sensing and their integration into the overall microsystem. Various examples of MEMS are studied in order to better illustrate the presentation of the different modeling principles and algorithms. Through its objective, approach and scope, this book offers a novel and systematic insight into the MEMS domain and complements existing work in the literature addressing part of the material developed herein.
https://magrudy-assets.storage.googleapis.com/9781489981165.jpg
146.990000 USD

Mechanics of Microelectromechanical Systems

by Ephrahim Garcia, Nicolae Lobontiu
Paperback / softback
Book cover image
This book offers a comprehensive coverage to the mechanics of microelectromechanical systems (MEMS), which are analyzed from a mechanical engineer's viewpoint as devices that transform an input form of energy, such as thermal, electrostatic, electromagnetic or optical, into output mechanical motion (in the case of actuation) or that can operate ...
Mechanics of Microelectromechanical Systems
This book offers a comprehensive coverage to the mechanics of microelectromechanical systems (MEMS), which are analyzed from a mechanical engineer's viewpoint as devices that transform an input form of energy, such as thermal, electrostatic, electromagnetic or optical, into output mechanical motion (in the case of actuation) or that can operate with the reversed functionality (as in sensors) and convert an external stimulus, such as mechanical motion, into (generally) electric energy. The impetus of this proposal stems from the perception that such an approach might contribute to a more solid understanding of the principles governing the mechanics of MEMS, and would hopefully enhance the efficiency of modeling and designing reliable and desirably-optimized microsystems. The work represents an attempt at both extending and deepening the mechanical-based approach to MEMS in the static domain by providing simple, yet reliable tools that are applicable to micromechanism design through current fabrication technologies. Lumped-parameter stiffness and compliance properties of flexible components are derived both analytically (as closed-form solutions) and as simplified (engineering) formulas. Also studied are the principal means of actuation/sensing and their integration into the overall microsystem. Various examples of MEMS are studied in order to better illustrate the presentation of the different modeling principles and algorithms. Through its objective, approach and scope, this book offers a novel and systematic insight into the MEMS domain and complements existing work in the literature addressing part of the material developed herein.
https://magrudy-assets.storage.googleapis.com/9781402080135.jpg
146.990000 USD

Mechanics of Microelectromechanical Systems

by Ephrahim Garcia, Nicolae Lobontiu
Hardback
Book cover image
System Dynamics for Engineering Students: Concepts and Applications discusses the basic concepts of engineering system dynamics. Engineering system dynamics focus on deriving mathematical models based on simplified physical representations of actual systems, such as mechanical, electrical, fluid, or thermal, and on solving the mathematical models. The resulting solution is utilized ...
System Dynamics for Engineering Students
System Dynamics for Engineering Students: Concepts and Applications discusses the basic concepts of engineering system dynamics. Engineering system dynamics focus on deriving mathematical models based on simplified physical representations of actual systems, such as mechanical, electrical, fluid, or thermal, and on solving the mathematical models. The resulting solution is utilized in design or analysis before producing and testing the actual system. The book discusses the main aspects of a system dynamics course for engineering students; mechanical, electrical, and fluid and thermal system modeling; the Laplace transform technique; and the transfer function approach. It also covers the state space modeling and solution approach; modeling system dynamics in the frequency domain using the sinusoidal (harmonic) transfer function; and coupled-field dynamic systems. The book is designed to be a one-semester system-dynamics text for upper-level undergraduate students with an emphasis on mechanical, aerospace, or electrical engineering. It is also useful for understanding the design and development of micro- and macro-scale structures, electric and fluidic systems with an introduction to transduction, and numerous simulations using MATLAB and SIMULINK.
https://magrudy-assets.storage.googleapis.com/9780240811284.jpg
146.92 USD

System Dynamics for Engineering Students

by Nicolae Lobontiu
Hardback
Book cover image
Here is a textbook for senior undergraduate and graduate level students that offers a novel and systematic look into the dynamics of MEMS. It includes numerous solved examples together with the proposed problems. The material to be found here will also be of interest to researchers with a non-mechanical background. ...
Dynamics of Microelectromechanical Systems
Here is a textbook for senior undergraduate and graduate level students that offers a novel and systematic look into the dynamics of MEMS. It includes numerous solved examples together with the proposed problems. The material to be found here will also be of interest to researchers with a non-mechanical background. The book focuses on the mechanical domain, specifically the dynamic sub-domain, and provides an in-depth treatment of problems that involve reliable modeling, analysis and design.
https://magrudy-assets.storage.googleapis.com/9781441942258.jpg
125.990000 USD

Dynamics of Microelectromechanical Systems

by Nicolae Lobontiu
Paperback / softback
Book cover image
System Dynamics for Engineering Students: Concepts and Applications discusses the basic concepts of engineering system dynamics. Engineering system dynamics focus on deriving mathematical models based on simplified physical representations of actual systems, such as mechanical, electrical, fluid, or thermal, and on solving the mathematical models. The resulting solution is utilized ...
System Dynamics for Engineering Students: Concepts and Applications
System Dynamics for Engineering Students: Concepts and Applications discusses the basic concepts of engineering system dynamics. Engineering system dynamics focus on deriving mathematical models based on simplified physical representations of actual systems, such as mechanical, electrical, fluid, or thermal, and on solving the mathematical models. The resulting solution is utilized in design or analysis before producing and testing the actual system. The book discusses the main aspects of a system dynamics course for engineering students; mechanical, electrical, and fluid and thermal system modeling; the Laplace transform technique; and the transfer function approach. It also covers the state space modeling and solution approach; modeling system dynamics in the frequency domain using the sinusoidal (harmonic) transfer function; and coupled-field dynamic systems. The book is designed to be a one-semester system-dynamics text for upper-level undergraduate students with an emphasis on mechanical, aerospace, or electrical engineering. It is also useful for understanding the design and development of micro- and macro-scale structures, electric and fluidic systems with an introduction to transduction, and numerous simulations using MATLAB and SIMULINK. The first textbook to include a chapter on the important area of coupled-field systemsProvides a more balanced treatment of mechanical and electrical systems, making it appealing to both engineering specialties
https://magrudy-assets.storage.googleapis.com/9780128101841.jpg
136.450000 USD
Paperback
Book cover image
Engineering system dynamics focuses on deriving mathematical models based on simplified physical representations of actual systems, such as mechanical, electrical, fluid, or thermal, and on solving these models for analysis or design purposes. System Dynamics for Engineering Students: Concepts and Applications features a classical approach to system dynamics and is ...
System Dynamics for Engineering Students: Concepts and Applications
Engineering system dynamics focuses on deriving mathematical models based on simplified physical representations of actual systems, such as mechanical, electrical, fluid, or thermal, and on solving these models for analysis or design purposes. System Dynamics for Engineering Students: Concepts and Applications features a classical approach to system dynamics and is designed to be utilized as a one-semester system dynamics text for upper-level undergraduate students with emphasis on mechanical, aerospace, or electrical engineering. It is the first system dynamics textbook to include examples from compliant (flexible) mechanisms and micro/nano electromechanical systems (MEMS/NEMS). This new second edition has been updated to provide more balance between analytical and computational approaches; introduces additional in-text coverage of Controls; and includes numerous fully solved examples and exercises.
https://magrudy-assets.storage.googleapis.com/9780128045596.jpg
191.55 USD
Paperback / softback
Book cover image
System Dynamics is an engineering discipline in which students learn how to create and analyze mathematical models of dynamic mechanical, electrical/electromagnetic, thermal and fluid/pneumatic systems with the practical goal of using this knowledge to design and test various real-world systems before they are built, thus realizing significant cost savings. System ...
System Dynamics for Engineering Students w/Online Testing: Concepts and Applications
System Dynamics is an engineering discipline in which students learn how to create and analyze mathematical models of dynamic mechanical, electrical/electromagnetic, thermal and fluid/pneumatic systems with the practical goal of using this knowledge to design and test various real-world systems before they are built, thus realizing significant cost savings. System Dynamics for Engineering Students by Nicolae Lobontiu takes the classical approach to system dynamics, rearranges it into a more logical teaching progression, provides a more balanced coverage of the main field systems(mechanical, electrical/electromagnetic, thermal and fluid/pneumatic), and is the first system dynamics textbook to include extensive examples from the relatively new application areas of microelectromechanical systems (MEMS) and compliant (flexible) mechanical devices. Written by an established author with extensive teaching and research experience in the field of MEMS/NEMS, this book also provides unique coverage of couple-field problems and offers more ancillary instructor support than any other system dynamics text.
https://magrudy-assets.storage.googleapis.com/9780123819901.jpg
146.950000 USD
Hardback
Book cover image
Flexure hinges hold several advantages over classical rotation joints, including no friction losses, no need for lubrication, no hysteresis, compactness, capacity to be utilized in small-scale applications, ease of fabrication, virtually no assembly, and no required maintenance. Compliant Mechanisms: Design of Flexure Hinges provides practical answers to the present and ...
Compliant Mechanisms: Design of Flexure Hinges
Flexure hinges hold several advantages over classical rotation joints, including no friction losses, no need for lubrication, no hysteresis, compactness, capacity to be utilized in small-scale applications, ease of fabrication, virtually no assembly, and no required maintenance. Compliant Mechanisms: Design of Flexure Hinges provides practical answers to the present and future needs of efficient design, analysis, and optimization of devices that incorporate flexure hinges. With a highly original approach the text: Discusses new and classical types of flexure hinges (single-, two- and multiple-axis) for two- and three-dimensional applications Addresses a wide range of industrial applications, including micro- and nano-scale mechanisms Quantifies flexibility, precision of rotation, sensitivity to parasitic loading, energy consumption, and stress limitations through closed-form compliance equations Offers a unitary presentation of individual flexure hinges as fully-compliant members by means of closed-form compliance (spring rates) equations Fully defines the lumped-parameter compliance, inertia and damping properties of flexure hinges Develops a finite element approach to compliant mechanisms by giving the elemental formulation of new flexure hinge line elements Incorporates more advanced topics dedicated to flexure hinges including large deformations, buckling, torsion, composite flexures, shape optimization and thermal effects Compliant Mechanisms: Design of Flexure Hinges provides practical answers and directions to the needs of efficiently designing, analyzing, and optimizing devices that include flexure hinges. It contains ready-to-use plots and simple equations describing several flexure types for the professional that needs quick solutions to current applications. The book also provides self-contained, easy-to-apply mathematical tools that provide sufficient guidance for real-time problem solving of further applications.
https://magrudy-assets.storage.googleapis.com/9780849313677.jpg
196.59 USD
Hardback
Book cover image
Flexure hinges hold several advantages over classical rotation joints, including no friction losses, no need for lubrication, no hysteresis, compactness, capacity to be utilized in small-scale applications, ease of fabrication, virtually no assembly, and no required maintenance. Compliant Mechanisms: Design of Flexure Hinges provides practical answers to the present and ...
Compliant Mechanisms: Design of Flexure Hinges
Flexure hinges hold several advantages over classical rotation joints, including no friction losses, no need for lubrication, no hysteresis, compactness, capacity to be utilized in small-scale applications, ease of fabrication, virtually no assembly, and no required maintenance. Compliant Mechanisms: Design of Flexure Hinges provides practical answers to the present and future needs of efficient design, analysis, and optimization of devices that incorporate flexure hinges. With a highly original approach the text: Discusses new and classical types of flexure hinges (single-, two- and multiple-axis) for two- and three-dimensional applications Addresses a wide range of industrial applications, including micro- and nano-scale mechanisms Quantifies flexibility, precision of rotation, sensitivity to parasitic loading, energy consumption, and stress limitations through closed-form compliance equations Offers a unitary presentation of individual flexure hinges as fully-compliant members by means of closed-form compliance (spring rates) equations Fully defines the lumped-parameter compliance, inertia and damping properties of flexure hinges Develops a finite element approach to compliant mechanisms by giving the elemental formulation of new flexure hinge line elements Incorporates more advanced topics dedicated to flexure hinges including large deformations, buckling, torsion, composite flexures, shape optimization and thermal effects Compliant Mechanisms: Design of Flexure Hinges provides practical answers and directions to the needs of efficiently designing, analyzing, and optimizing devices that include flexure hinges. It contains ready-to-use plots and simple equations describing several flexure types for the professional that needs quick solutions to current applications. The book also provides self-contained, easy-to-apply mathematical tools that provide sufficient guidance for real-time problem solving of further applications.
83.950000 USD
Paperback / softback
Page 1 of 1