Filter
(found 13 products)
Book cover image
This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums. For instance, infinite-equilibrium dynamical systems have higher-order singularity, ...
Bifurcation and Stability in Nonlinear Dynamical Systems
This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums. For instance, infinite-equilibrium dynamical systems have higher-order singularity, which dramatically changes dynamical behaviors and possesses the similar characteristics of discontinuous dynamical systems. The stability and bifurcation of equilibriums on the specific eigenvector are presented, and the spiral stability and Hopf bifurcation of equilibriums in nonlinear systems are presented through the Fourier series transformation. The bifurcation and stability of higher-order singularity equilibriums are presented through the (2m)th and (2m+1)th -degree polynomial systems. From local analysis, dynamics of infinite-equilibrium systems is discussed. The research on infinite-equilibrium systems will bring us to the new era of dynamical systems and control. Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums; Discusses dynamics of infinite-equilibrium systems; Demonstrates higher-order singularity.
https://magrudy-assets.storage.googleapis.com/9783030229092.jpg
188.990000 USD

Bifurcation and Stability in Nonlinear Dynamical Systems

by Albert C. J. Luo
Hardback
Book cover image
This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of ...
System Dynamics with Interaction Discontinuity
This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.
https://magrudy-assets.storage.googleapis.com/9783319174211.jpg
157.490000 USD

System Dynamics with Interaction Discontinuity

by Dennis M O'Connor, Albert C. J. Luo
Hardback
Book cover image
Nonlinear Dynamics of Complex Systems describes chaos, fractal and stochasticities within celestial mechanics, financial systems and biochemical systems. Part I discusses methods and applications in celestial systems and new results in such areas as low energy impact dynamics, low-thrust planar trajectories to the moon and earth-to-halo transfers in the sun, ...
Nonlinear and Complex Dynamics: Applications in Physical, Biological, and Financial Systems
Nonlinear Dynamics of Complex Systems describes chaos, fractal and stochasticities within celestial mechanics, financial systems and biochemical systems. Part I discusses methods and applications in celestial systems and new results in such areas as low energy impact dynamics, low-thrust planar trajectories to the moon and earth-to-halo transfers in the sun, earth and moon. Part II presents the dynamics of complex systems including bio-systems, neural systems, chemical systems and hydro-dynamical systems. Finally, Part III covers economic and financial systems including market uncertainty, inflation, economic activity and foreign competition and the role of nonlinear dynamics in each.
https://magrudy-assets.storage.googleapis.com/9781461402305.jpg
209.990000 USD

Nonlinear and Complex Dynamics: Applications in Physical, Biological, and Financial Systems

by Albert C. J. Luo, Dumitru Baleanu, Jose Antonio Tenreiro Machado
Hardback
Book cover image
Nonlinear problems are of interest to engineers, physicists and mathematicians and many other scientists because most systems are inherently nonlinear in nature. As nonlinear equations are difficult to solve, nonlinear systems are commonly approximated by linear equations. This works well up to some accuracy and some range for the input ...
Analytical Routes to Chaos in Nonlinear Engineering
Nonlinear problems are of interest to engineers, physicists and mathematicians and many other scientists because most systems are inherently nonlinear in nature. As nonlinear equations are difficult to solve, nonlinear systems are commonly approximated by linear equations. This works well up to some accuracy and some range for the input values, but some interesting phenomena such as chaos and singularities are hidden by linearization and perturbation analysis. It follows that some aspects of the behavior of a nonlinear system appear commonly to be chaotic, unpredictable or counterintuitive. Although such a chaotic behavior may resemble a random behavior, it is absolutely deterministic. Analytical Routes to Chaos in Nonlinear Engineering discusses analytical solutions of periodic motions to chaos or quasi-periodic motions in nonlinear dynamical systems in engineering and considers engineering applications, design, and control. It systematically discusses complex nonlinear phenomena in engineering nonlinear systems, including the periodically forced Duffing oscillator, nonlinear self-excited systems, nonlinear parametric systems and nonlinear rotor systems. Nonlinear models used in engineering are also presented and a brief history of the topic is provided. Key features: * Considers engineering applications, design and control * Presents analytical techniques to show how to find the periodic motions to chaos in nonlinear dynamical systems * Systematically discusses complex nonlinear phenomena in engineering nonlinear systems * Presents extensively used nonlinear models in engineering Analytical Routes to Chaos in Nonlinear Engineering is a practical reference for researchers and practitioners across engineering, mathematics and physics disciplines, and is also a useful source of information for graduate and senior undergraduate students in these areas.
https://magrudy-assets.storage.googleapis.com/9781118883945.jpg
157.450000 USD

Analytical Routes to Chaos in Nonlinear Engineering

by Albert C. J. Luo
Hardback
Book cover image
This book provides students and researchers with a systematic solution for fluid-induced structural vibrations, galloping instability and the chaos of cables. They will also gain a better understanding of stable and unstable periodic motions and chaos in fluid-induced structural vibrations. Further, the results presented here will help engineers effectively design ...
Galloping Instability to Chaos of Cables
This book provides students and researchers with a systematic solution for fluid-induced structural vibrations, galloping instability and the chaos of cables. They will also gain a better understanding of stable and unstable periodic motions and chaos in fluid-induced structural vibrations. Further, the results presented here will help engineers effectively design and analyze fluid-induced vibrations.
https://magrudy-assets.storage.googleapis.com/9789811052415.jpg
178.490000 USD

Galloping Instability to Chaos of Cables

by Albert C. J. Luo
Hardback
Book cover image
Exact analytical solutions to periodic motions in nonlinear dynamical systems are almost not possible. Since the 18th century, one has extensively used techniques such as perturbation methods to obtain approximate analytical solutions of periodic motions in nonlinear systems. However, the perturbation methods cannot provide the enough accuracy of analytical solutions ...
Toward Analytical Chaos in Nonlinear Systems
Exact analytical solutions to periodic motions in nonlinear dynamical systems are almost not possible. Since the 18th century, one has extensively used techniques such as perturbation methods to obtain approximate analytical solutions of periodic motions in nonlinear systems. However, the perturbation methods cannot provide the enough accuracy of analytical solutions of periodic motions in nonlinear dynamical systems. So the bifurcation trees of periodic motions to chaos cannot be achieved analytically. The author has developed an analytical technique that is more effective to achieve periodic motions and corresponding bifurcation trees to chaos analytically. Toward Analytical Chaos in Nonlinear Systems systematically presents a new approach to analytically determine periodic flows to chaos or quasi-periodic flows in nonlinear dynamical systems with/without time-delay. It covers the mathematical theory and includes two examples of nonlinear systems with/without time-delay in engineering and physics. From the analytical solutions, the routes from periodic motions to chaos are developed analytically rather than the incomplete numerical routes to chaos. The analytical techniques presented will provide a better understanding of regularity and complexity of periodic motions and chaos in nonlinear dynamical systems. Key features: * Presents the mathematical theory of analytical solutions of periodic flows to chaos or quasieriodic flows in nonlinear dynamical systems * Covers nonlinear dynamical systems and nonlinear vibration systems * Presents accurate, analytical solutions of stable and unstable periodic flows for popular nonlinear systems * Includes two complete sample systems * Discusses time-delayed, nonlinear systems and time-delayed, nonlinear vibrational systems * Includes real world examples Toward Analytical Chaos in Nonlinear Systems is a comprehensive reference for researchers and practitioners across engineering, mathematics and physics disciplines, and is also a useful source of information for graduate and senior undergraduate students in these areas.
https://magrudy-assets.storage.googleapis.com/9781118658611.jpg
157.450000 USD

Toward Analytical Chaos in Nonlinear Systems

by Albert C. J. Luo
Hardback
Book cover image
This unique book presents the discretization of continuous systems and implicit mapping dynamics of periodic motions to chaos in continuous nonlinear systems. The stability and bifurcation theory of fixed points in discrete nonlinear dynamical systems is reviewed, and the explicit and implicit maps of continuous dynamical systems are developed through ...
Discretization and Implicit Mapping Dynamics
This unique book presents the discretization of continuous systems and implicit mapping dynamics of periodic motions to chaos in continuous nonlinear systems. The stability and bifurcation theory of fixed points in discrete nonlinear dynamical systems is reviewed, and the explicit and implicit maps of continuous dynamical systems are developed through the single-step and multi-step discretizations. The implicit dynamics of period-m solutions in discrete nonlinear systems are discussed. The book also offers a generalized approach to finding analytical and numerical solutions of stable and unstable periodic flows to chaos in nonlinear systems with/without time-delay. The bifurcation trees of periodic motions to chaos in the Duffing oscillator are shown as a sample problem, while the discrete Fourier series of periodic motions and chaos are also presented. The book offers a valuable resource for university students, professors, researchers and engineers in the fields of applied mathematics, physics, mechanics, control systems, and engineering.
https://magrudy-assets.storage.googleapis.com/9783662472743.jpg
114.450000 USD

Discretization and Implicit Mapping Dynamics

by Albert C. J. Luo
Hardback
Book cover image
Discontinuous Dynamical Systems on Time-varying Domains is the first monograph focusing on this topic. While in the classic theory of dynamical systems the focus is on dynamical systems on time-invariant domains, this book presents discontinuous dynamical systems on time-varying domains where the corresponding switchability of a flow to the time-varying ...
Discontinuous Dynamical Systems on Time-varying Domains
Discontinuous Dynamical Systems on Time-varying Domains is the first monograph focusing on this topic. While in the classic theory of dynamical systems the focus is on dynamical systems on time-invariant domains, this book presents discontinuous dynamical systems on time-varying domains where the corresponding switchability of a flow to the time-varying boundary in discontinuous dynamical systems is discussed. From such a theory, principles of dynamical system interactions without any physical connections are presented. Several discontinuous systems on time-varying domains are analyzed in detail to show how to apply the theory to practical problems. The book can serve as a reference book for researchers, advanced undergraduate and graduate students in mathematics, physics and mechanics. Dr. Albert C. J. Luo is a professor at Southern Illinois University Edwardsville, USA. His research is involved in the nonlinear theory of dynamical systems. His main contributions are in the following aspects: a stochastic and resonant layer theory in nonlinear Hamiltonian systems, singularity on discontinuous dynamical systems, and approximate nonlinear theories for a deformable-body.
https://magrudy-assets.storage.googleapis.com/9783642002526.jpg
167.990000 USD

Discontinuous Dynamical Systems on Time-varying Domains

by Albert C. J. Luo
Hardback
Page 1 of 1