Filter
(found 7482 products)
Book cover image
This book uniquely covers both the physics of photovoltaic (PV) cells and the design of PV systems for real-life applications. - Fundamental principles of semiconductor solar cells. - PV technology: crystalline silicon solar cells; thin-film cells; PV modules; third-generation concepts. - PV systems, from simple stand-alone, to complex systems connected ...
Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems
This book uniquely covers both the physics of photovoltaic (PV) cells and the design of PV systems for real-life applications. - Fundamental principles of semiconductor solar cells. - PV technology: crystalline silicon solar cells; thin-film cells; PV modules; third-generation concepts. - PV systems, from simple stand-alone, to complex systems connected to the grid; components; design; deployment; performance. The book is an invaluable reference for researchers, industrial engineers and designers working in solar energy generation. The book is also ideal for university and third-level physics or engineering courses on solar photovoltaics, with exercises to check students' understanding and reinforce learning. It is the perfect companion to the Massive Open Online Course (MOOC) on Solar Energy (DelftX, ET.3034TU) presented by co-author Arno Smets. The course is available in English on the nonprofit open source edX.org platform, and in Arabic on edraak.org. Over 100,000 students have already registered for these MOOCs.
https://magrudy-assets.storage.googleapis.com/9781906860325.jpg
38.840000 USD

Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems

by Rene Van Swaaij, Olindo Isabella, Klaus Jager, Arno Smets
Paperback / softback
Book cover image
This book is targeted mainly to the undergraduate students of USA, UK and other European countries, and the M. Sc of Asian countries, but will be found useful for the graduate students, Graduate Record Examination (GRE), Teachers and Tutors. This is a by-product of lectures given at the Osmania University, ...
1000 Solved Problems in Modern Physics
This book is targeted mainly to the undergraduate students of USA, UK and other European countries, and the M. Sc of Asian countries, but will be found useful for the graduate students, Graduate Record Examination (GRE), Teachers and Tutors. This is a by-product of lectures given at the Osmania University, University of Ottawa and University of Tebrez over several years, and is intended to assist the students in their assignments and examinations. The book covers a wide spectrum of disciplines in Modern Physics, and is mainly based on the actual examination papers of UK and the Indian Universities. The selected problems display a large variety and conform to syllabi which are currently being used in various countries. The book is divided into ten chapters. Each chapter begins with basic concepts containing a set of formulae and explanatory notes for quick reference, followed by a number of problems and their detailed solutions. The problems are judiciously selected and are arranged section-wise. The so- tions are neither pedantic nor terse. The approach is straight forward and step-- step solutions are elaborately provided. More importantly the relevant formulas used for solving the problems can be located in the beginning of each chapter. There are approximately 150 line diagrams for illustration. Basic quantum mechanics, elementary calculus, vector calculus and Algebra are the pre-requisites.
https://magrudy-assets.storage.googleapis.com/9783642043321.jpg
209.990000 USD

1000 Solved Problems in Modern Physics

by Ahmad A Kamal
Hardback
Book cover image
Engineered composites materials display superior properties to pristine materials. Glass fibres have been used for years in the production of light weight composites. This book is a much needed update as to the processing methods and technologies present in the manufacturing of GFRP. Coverage of machining, cutting, tools, and thermal ...
Glass Fibre-Reinforced Polymer Composites: Materials, Manufacturing and Engineering
Engineered composites materials display superior properties to pristine materials. Glass fibres have been used for years in the production of light weight composites. This book is a much needed update as to the processing methods and technologies present in the manufacturing of GFRP. Coverage of machining, cutting, tools, and thermal loads are discussed. Ideal for researchers in academia and industry.
https://magrudy-assets.storage.googleapis.com/9783110608281.jpg
136.490000 USD

Glass Fibre-Reinforced Polymer Composites: Materials, Manufacturing and Engineering

Hardback
Book cover image
Scanning Electron Microscopy provides a description of the physics of electron-probe formation and of electron-specimen interactions. The different imaging and analytical modes using secondary and backscattered electrons, electron-beam-induced currents, X-ray and Auger electrons, electron channelling effects, and cathodoluminescence are discussed to evaluate specific contrasts and to obtain quantitative information.
Scanning Electron Microscopy: Physics of Image Formation and Microanalysis
Scanning Electron Microscopy provides a description of the physics of electron-probe formation and of electron-specimen interactions. The different imaging and analytical modes using secondary and backscattered electrons, electron-beam-induced currents, X-ray and Auger electrons, electron channelling effects, and cathodoluminescence are discussed to evaluate specific contrasts and to obtain quantitative information.
https://magrudy-assets.storage.googleapis.com/9783642083723.jpg
209.990000 USD

Scanning Electron Microscopy: Physics of Image Formation and Microanalysis

by Ludwig Reimer
Paperback / softback
Book cover image
Scanning electr on microscopy (SEM) and x-ray microanalysis can produce magnified images and in situ chemical information from virtually any type of specimen. The two instruments generally operate in a high vacuum and a very dry environment in order to produce the high energy beam of electrons needed for imaging ...
Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis
Scanning electr on microscopy (SEM) and x-ray microanalysis can produce magnified images and in situ chemical information from virtually any type of specimen. The two instruments generally operate in a high vacuum and a very dry environment in order to produce the high energy beam of electrons needed for imaging and analysis. With a few notable exceptions, most specimens destined for study in the SEM are poor conductors and composed of beam sensitive light elements containing variable amounts of water. In the SEM, the imaging system depends on the specimen being sufficiently electrically conductive to ensure that the bulk of the incoming electrons go to ground. The formation of the image depends on collecting the different signals that are scattered as a consequence of the high energy beam interacting with the sample. Backscattered electrons and secondary electrons are generated within the primary beam-sample interactive volume and are the two principal signals used to form images. The backscattered electron coefficient ( ? ) increases with increasing atomic number of the specimen, whereas the secondary electron coefficient ( ? ) is relatively insensitive to atomic number. This fundamental diff- ence in the two signals can have an important effect on the way samples may need to be prepared. The analytical system depends on collecting the x-ray photons that are generated within the sample as a consequence of interaction with the same high energy beam of primary electrons used to produce images.
https://magrudy-assets.storage.googleapis.com/9780387857305.jpg
124.950000 USD

Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis

by Patrick Echlin
Hardback
Book cover image
This book presents a selection of advanced lectures from leading researchers, providing recent theoretical results on strongly coupled quantum field theories. It also analyzes their use for describing new quantum states, which are physically realizable in condensed matter, cold-atomic systems, as well as artificial materials. It particularly focuses on the ...
Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory: Proceedings, International Institute of Physics, Natal, Rn, Brazil, 2-21 August 2015
This book presents a selection of advanced lectures from leading researchers, providing recent theoretical results on strongly coupled quantum field theories. It also analyzes their use for describing new quantum states, which are physically realizable in condensed matter, cold-atomic systems, as well as artificial materials. It particularly focuses on the engineering of these states in quantum devices and novel materials useful for quantum information processing. The book offers graduate students and young researchers in the field of modern condensed matter theory an updated review of the most relevant theoretical methods used in strongly coupled field theory and string theory. It also provides the tools for understanding their relevance in describing the emergence of new quantum states in a variety of physical settings. Specifically, this proceedings book summarizes new and previously unrelated developments in modern condensed matter physics, in particular: the interface of condensed matter theory and quantum information theory; the interface of condensed matter physics and the mathematics emerging from the classification of the topological phases of matter, such as topological insulators and topological superconductors; and the simulation of condensed matter systems with cold atoms in optical lattices.
https://magrudy-assets.storage.googleapis.com/9783030354725.jpg
209.990000 USD

Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory: Proceedings, International Institute of Physics, Natal, Rn, Brazil, 2-21 August 2015

Hardback
Book cover image
This book consists of two parts. Part A (Chapters 1-3) is an introduction to the physics of conducting solids, while Part B (Chapters 4-10) is an introduction to the theory of electromagnetic fields and waves. The book is intended to introduce the student to classical electrodynamics and, at the same ...
Introduction to Electromagnetic Theory and the Physics of Conducting Solids
This book consists of two parts. Part A (Chapters 1-3) is an introduction to the physics of conducting solids, while Part B (Chapters 4-10) is an introduction to the theory of electromagnetic fields and waves. The book is intended to introduce the student to classical electrodynamics and, at the same time, to explain in simple terms the quantum theory of conducting substances - in particular, the solid ones. Excessive mathematical proof is avoided as much as possible, in favor of pedagogical efficiency at an introductory level. The theory of vector fields is briefly discussed in a separate chapter, helping the student cope with the mathematical challenges of Maxwell's theory. The book serves as a primary source for a sophomore-level electromagnetics course in an electronics-oriented engineering program, but it can also be used as a secondary (tutorial) source for an intermediate-level course in electrodynamics for physicists and engineers. The content is based on the author's lecture notes for his sophomore-level Physics course at the Hellenic Naval Academy.
https://magrudy-assets.storage.googleapis.com/9783030309954.jpg
83.990000 USD
Hardback
Book cover image
An Introduction to Statistical Mechanics and Thermodynamics returns with a second edition which includes new chapters, further explorations, and updated information into the study of statistical mechanics and thermal dynamics. The first part of the book derives the entropy of the classical ideal gas, using only classical statistical mechanics and ...
An Introduction to Statistical Mechanics and Thermodynamics: Second Edition
An Introduction to Statistical Mechanics and Thermodynamics returns with a second edition which includes new chapters, further explorations, and updated information into the study of statistical mechanics and thermal dynamics. The first part of the book derives the entropy of the classical ideal gas, using only classical statistical mechanics and an analysis of multiple systems first suggested by Boltzmann. The properties of the entropy are then expressed as postulates of thermodynamics in the second part of the book. From these postulates, the formal structure of thermodynamics is developed. The third part of the book introduces the canonical and grand canonical ensembles, which are shown to facilitate calculations for many model systems. An explanation of irreversible phenomena that is consistent with time-reversal invariance in a closed system is presented. The fourth part of the book is devoted to quantum statistical mechanics, including black-body radiation, the harmonic solid, Bose-Einstein and Fermi-Dirac statistics, and an introduction to band theory, including metals, insulators, and semiconductors. The final chapter gives a brief introduction to the theory of phase transitions. Throughout the book, there is a strong emphasis on computational methods to make abstract concepts more concrete.
https://magrudy-assets.storage.googleapis.com/9780198853237.jpg
102.28 USD

An Introduction to Statistical Mechanics and Thermodynamics: Second Edition

by Robert Swendsen
Hardback
Book cover image
From fabrication to testing and modeling this monograph covers all aspects on the materials class of magneto active polymers. The focus is on computational modeling of manufacturing processes and material parameters. As other smart materials, these elastomers have the ability to change electrical and mechanical properties upon application of magnetic ...
Magneto-Active Polymers: Fabrication, characterisation, modelling and simulation at the micro- and macro-scale
From fabrication to testing and modeling this monograph covers all aspects on the materials class of magneto active polymers. The focus is on computational modeling of manufacturing processes and material parameters. As other smart materials, these elastomers have the ability to change electrical and mechanical properties upon application of magnetic fields. This allows for novel applications ranging from biomedical engineering to mechatronics.
https://magrudy-assets.storage.googleapis.com/9783110419511.jpg
144.890000 USD

Magneto-Active Polymers: Fabrication, characterisation, modelling and simulation at the micro- and macro-scale

by Paul Steinmann, Jean-Paul Pelteret
Hardback
Book cover image
This book deals with the study of superconductivity in systems with coexisting wide and narrow bands. It has been previously suggested that superconductivity can be enhanced in systems with coexisting wide and narrow bands when the Fermi level is near the narrow band edge. In this book, the authors study ...
Theoretical Study of Electron Correlation Driven Superconductivity in Systems with Coexisting Wide and Narrow Bands
This book deals with the study of superconductivity in systems with coexisting wide and narrow bands. It has been previously suggested that superconductivity can be enhanced in systems with coexisting wide and narrow bands when the Fermi level is near the narrow band edge. In this book, the authors study two problems concerning this mechanism in order to: (a) provide a systematic understanding of the role of strong electron correlation effects, and (b) propose a realistic candidate material which meets the ideal criteria for high-Tc superconductivity. Regarding the role of strong correlation effects, the FLEX+DMFT method is adopted. Based on systematic calculations, the pairing mechanism is found to be indeed valid even when the strong correlation effect is considered within the formalism. In the second half of the book, the authors propose a feasible candidate material by introducing the concept of the hidden ladder electronic structure, arising from the combination of the bilayer lattice structure and the anisotropic orbitals of the electrons. As such, the book contributes a valuable theoretical guiding principle for seeking unknown high-Tc superconductors.
https://magrudy-assets.storage.googleapis.com/9789811506666.jpg
167.990000 USD

Theoretical Study of Electron Correlation Driven Superconductivity in Systems with Coexisting Wide and Narrow Bands

by Daisuke Ogura
Hardback
Book cover image
What kind of information on the electrons' organisation in solids is yielded by measuring their thermoelectric response? Fundamentals of Thermoelectricity gives an account of our current understanding of thermoelectric phenomena in solids by presenting basic theoretical concepts and numerous experimental results. Many readers will be surprised to learn that even ...
Fundamentals of Thermoelectricity
What kind of information on the electrons' organisation in solids is yielded by measuring their thermoelectric response? Fundamentals of Thermoelectricity gives an account of our current understanding of thermoelectric phenomena in solids by presenting basic theoretical concepts and numerous experimental results. Many readers will be surprised to learn that even in the case of simple metals (considered to be domesticated long ago by the quantum theory of solids) our understanding lags far behind known experimental facts. The two theories of phonon drag, the positive Seebeck coefficient of noble metals, and the three-orders-of-magnitude gap between theory and experiment regarding the thermoelectric response of Bogoliubov quasi-particles of a superconductor are among the forgotten puzzles discussed in this book. Among other novelties, it contains an original discussion of the role of the de Broglie thermal wave-length in setting the magnitude of the thermoelectric response in Fermi liquids.
https://magrudy-assets.storage.googleapis.com/9780198847946.jpg
65.09 USD

Fundamentals of Thermoelectricity

by Kamran Behnia
Paperback / softback
Book cover image
Reviews in Plasmonics is a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the years progress in Plasmonics and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the ...
Reviews in Plasmonics 2017
Reviews in Plasmonics is a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the years progress in Plasmonics and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics.
https://magrudy-assets.storage.googleapis.com/9783030188337.jpg
188.990000 USD

Reviews in Plasmonics 2017

Hardback
Book cover image
Soft condensed matter physics, which emerged as a distinct branch of physics in the 1990s, studies complex fluids: liquids in which structures with length scale between the molecular and the macroscopic exist. Polymers, liquid crystals, surfactant solutions, and colloids fall into this category. Physicists deal with properties of soft matter ...
Soft Condensed Matter Physics in Molecular and Cell Biology
Soft condensed matter physics, which emerged as a distinct branch of physics in the 1990s, studies complex fluids: liquids in which structures with length scale between the molecular and the macroscopic exist. Polymers, liquid crystals, surfactant solutions, and colloids fall into this category. Physicists deal with properties of soft matter systems that are generic and largely independent of chemical details. They are especially fascinated by the way soft matter systems can harness Brownian motion to self-assemble into higher-order structures. Exploring the generic properties of soft matter offers insights into many fundamental questions that cut across a number of disciplines. Although many of these apply to materials and industrial applications, the focus of this volume is on their applications in molecular and cell biology based on the realization that biology is soft matter come alive. The chapters in Soft Condensed Matter Physics in Molecular and Cell Biology originated as lectures in the NATO Advanced Science Institute (ASI) and Scottish Universities Summer Schools in Physics with the same name; they represent the thinking of seventeen experts operating at the cutting edge of their respective fields. The book provides a thorough grounding in the fundamental physics of soft matter and then explores its application with regard to the three important classes of biomacromolecules: proteins, DNA, and lipids, as well as to aspects of the biology of cells. The final section of the book considers experimental techniques, covering single molecule force spectroscopy of proteins, the use of optical tweezers, along with X-ray, neutron, and light scattering from solutions. While this work presents fundamentals that make it a suitable text for graduate students in physics, it also offers valuable insights for established soft condensed matter physicists seeking to contribute to biology, and for biologists wanting to understand what the latest think
https://magrudy-assets.storage.googleapis.com/9780367391362.jpg
78.700000 USD

Soft Condensed Matter Physics in Molecular and Cell Biology

Paperback / softback
Book cover image
Surfactants... today you have probably eaten some, or rubbed others on your body. Plants, animals (including you) and microorganisms make them, and many everyday products (e.g. detergents, cosmetics, foodstuffs) contain them. Surfactant molecules have one part which is soluble in water and another which is not. This gives surfactant molecules ...
Surfactants: In Solution, at Interfaces and in Colloidal Dispersions
Surfactants... today you have probably eaten some, or rubbed others on your body. Plants, animals (including you) and microorganisms make them, and many everyday products (e.g. detergents, cosmetics, foodstuffs) contain them. Surfactant molecules have one part which is soluble in water and another which is not. This gives surfactant molecules two valuable properties: 1) they adsorb at surfaces (e.g. of an oil droplet in water), and 2) they stick together (aggregate) in water. The aggregates (micelles) are able to dissolve materials not soluble in water alone, and adsorbed surfactant layers, at the surfaces of particles or (say) oil droplets in water, stop the particles or drops sticking together. This is why stable emulsions such as milk do not separate into layers. This book treats the basic physical chemistry and physics underlying the behaviour of surfactant systems. In this book, you will first learn about some background material including hydrophobic hydration, interfacial tension and capillarity (Section I). Discussion of surfactant adsorption at liquid/fluid and solid/liquid interfaces is given in Section II, and includes thermodynamics of adsorption, dynamic and rheological aspects of liquid interfaces and the direct characterisation of surfactant monolayers. In Section III, a description is given of surfactant aggregation to give micelles, lyotropic liquid crystals, microemulsions and Winsor systems. There follows a discussion of surface forces and the way they confer stability on lyophobic colloids and thin liquid films (Section IV). Various dispersions stabilised by adsorbed surfactant or polymer (including solid in liquid dispersions, emulsions and foams) are considered in Section V. The wetting of solids and liquids is explored in Section VI. Like surfactants, small solid particles can adsorb at liquid/fluid interfaces, form monolayers and stabilise emulsions and foams. Such behaviour is covered in Section VII. It is assumed the reader has a knowledge of undergraduate physical chemistry, particularly chemical thermodynamics, and of simple physics. Mathematics (elementary algebra and calculus) is kept at a level consistent with the straightforward derivation of many of the equations presented.
https://magrudy-assets.storage.googleapis.com/9780198828600.jpg
102.28 USD

Surfactants: In Solution, at Interfaces and in Colloidal Dispersions

by Bob Aveyard
Hardback
Book cover image
Solid state physics, the study and prediction of the fundamental physical properties of materials, forms the backbone of modern materials science and has many technological applications. The unique feature of this text is the MATLAB (R)-based computational approach with several numerical techniques and simulation methods included. This is highly effective ...
Introductory Solid State Physics with MATLAB Applications
Solid state physics, the study and prediction of the fundamental physical properties of materials, forms the backbone of modern materials science and has many technological applications. The unique feature of this text is the MATLAB (R)-based computational approach with several numerical techniques and simulation methods included. This is highly effective in addressing the need for visualization and a direct hands-on approach in learning the theoretical concepts of solid state physics. The code is freely available to all textbook users. Additional Features: Uses the pedagogical tools of computational physics that have become important in enhancing physics teaching of advanced subjects such as solid state physics Adds visualization and simulation to the subject in a way that enables students to participate actively in a hand-on approach Covers the basic concepts of solid state physics and provides students with a deeper understanding of the subject matter Provides unique example exercises throughout the text Obtains mathematical analytical solutions Carries out illustrations of important formulae results using programming scripts that students can run on their own and reproduce graphs and/or simulations Helps students visualize solid state processes and apply certain numerical techniques using MATLAB (R), making the process of learning solid state physics much more effective Reinforces the examples discussed within the chapters through the use of end-of-chapter exercises Includes simple analytical and numerical examples to more challenging ones, as well as computational problems with the opportunity to run codes, create new ones, or modify existing ones to solve problems or reproduce certain results
https://magrudy-assets.storage.googleapis.com/9781466512306.jpg
143.20 USD

Introductory Solid State Physics with MATLAB Applications

by Trinanjan Datta, Javier E. Hasbun
Hardback
Book cover image
Few books exist that cover the hot field of second-generation spintronic devices, despite their potential to revolutionize the IT industry.Compiling the obstacles and progress of spin-controlled devices into one source, Spintronic Materials and Technology presents an in-depth examination of the most recent technological spintronic developments. Featuring contributions from active researchers ...
Spintronic Materials and Technology
Few books exist that cover the hot field of second-generation spintronic devices, despite their potential to revolutionize the IT industry.Compiling the obstacles and progress of spin-controlled devices into one source, Spintronic Materials and Technology presents an in-depth examination of the most recent technological spintronic developments. Featuring contributions from active researchers and leading experts, the book chronicles the main research challenges in spintronics. It first depicts the different classes of materials systems currently under investigation for use in spintronic devices. The contributors also address issues concerning the operation of spintronic devices, such as the new principle for future devices that use spin-polarized current. This promises to enable switching of individual spin components of the device while avoiding crosstalk at the nanoscale. The book concludes with descriptions of both Si and III-V semiconductor-based spin transistors and the integration of spin technology with photonics. The second-generation spintronic devices discussed in Spintronic Materials and Technology will not only improve the existing capabilities of electronic transistors, but will enable future computers to run faster and consume less power.
https://magrudy-assets.storage.googleapis.com/9780367390075.jpg
78.700000 USD

Spintronic Materials and Technology

Paperback / softback
Book cover image
This book introduces recent advances in the deterministic design of photonic structures, which overcome the current limitation in conventional disordered materials. It develops new concepts for disordered photonics inspired by notions in quantum mechanics, solid-state physics, mathematics and network theory, such as isospectrality, supersymmetry, graph network, small-world, de Broglie-Bohm theory, ...
Top-Down Design of Disordered Photonic Structures: Multidisciplinary Approaches Inspired by Quantum and Network Concepts
This book introduces recent advances in the deterministic design of photonic structures, which overcome the current limitation in conventional disordered materials. It develops new concepts for disordered photonics inspired by notions in quantum mechanics, solid-state physics, mathematics and network theory, such as isospectrality, supersymmetry, graph network, small-world, de Broglie-Bohm theory, and parity-time symmetry. The multidisciplinary approach based on the core concepts of isospectrality (Chapter 2) and metadisorder (Chapter 3) offers a new perspective on the design methodology in photonics and in general disordered structures toward top-down designs of future photonic applications: perfect bandgap with strong modal localization, switching of random waves for binary and fuzzy logics, photonic analogy of graph networks, interdimensional signal transport, robust wave functions in disordered structures, and a novel method of energy storage and phase trapping based on Bohmian photonics. This book will provide new design criteria for physicists and engineers in photonics, and inspirations for researchers in other fields.
https://magrudy-assets.storage.googleapis.com/9789811375262.jpg
62.990000 USD

Top-Down Design of Disordered Photonic Structures: Multidisciplinary Approaches Inspired by Quantum and Network Concepts

by Namkyoo Park, Xianji Piao, Sunkyu Yu
Paperback / softback
Book cover image
This handbook provides comprehensive treatment of the current state of glass science from the leading experts in the field. Opening with an enlightening contribution on the history of glass, the volume is then divided into eight parts. The first part covers fundamental properties, from the current understanding of the thermodynamics ...
Springer Handbook of Glass
This handbook provides comprehensive treatment of the current state of glass science from the leading experts in the field. Opening with an enlightening contribution on the history of glass, the volume is then divided into eight parts. The first part covers fundamental properties, from the current understanding of the thermodynamics of the amorphous state, kinetics, and linear and nonlinear optical properties through colors, photosensitivity, and chemical durability. The second part provides dedicated chapters on each individual glass type, covering traditional systems like silicates and other oxide systems, as well as novel hybrid amorphous materials and spin glasses. The third part features detailed descriptions of modern characterization techniques for understanding this complex state of matter. The fourth part covers modeling, from first-principles calculations through molecular dynamics simulations, and statistical modeling. The fifth part presents a range of laboratory and industrial glass processing methods. The remaining parts cover a wide and representative range of applications areas from optics and photonics through environment, energy, architecture, and sensing. Written by the leading international experts in the field, the Springer Handbook of Glass represents an invaluable resource for graduate students through academic and industry researchers working in photonics, optoelectronics, materials science, energy, architecture, and more.
https://magrudy-assets.storage.googleapis.com/9783319937267.jpg
419.990000 USD

Springer Handbook of Glass

Hardback
Book cover image
The work described in this book originates from a major effort to develop a fundamental theory of the glass and the jamming transitions. The first chapters guide the reader through the phenomenology of supercooled liquids and structural glasses and provide the tools to analyze the most frequently used models able ...
Jamming and Glass Transitions: In Mean-Field Theories and Beyond
The work described in this book originates from a major effort to develop a fundamental theory of the glass and the jamming transitions. The first chapters guide the reader through the phenomenology of supercooled liquids and structural glasses and provide the tools to analyze the most frequently used models able to predict the complex behavior of such systems. A fundamental outcome is a detailed theoretical derivation of an effective thermodynamic potential, along with the study of anomalous vibrational properties of sphere systems. The interested reader can find in these pages a clear and deep analysis of mean-field models as well as the description of advanced beyond-mean-field perturbative expansions. To investigate important second-order phase transitions in lattice models, the last part of the book proposes an innovative theoretical approach, based on a multi-layer construction. The different methods developed in this thesis shed new light on important connections among constraint satisfaction problems, jamming and critical phenomena in complex systems, and lay part of the groundwork for a complete theory of amorphous solids.
https://magrudy-assets.storage.googleapis.com/9783030235994.jpg
167.990000 USD

Jamming and Glass Transitions: In Mean-Field Theories and Beyond

by Ada Altieri
Hardback
Book cover image
This book provides extensive and novel insights into transport phenomena in MnSi, paving the way for applying the topology and chirality of spin textures to the development of spintronics devices. In particular, it describes in detail the key measurements, e.g. magnetoresistance and nonlinear electronic transport, and multiple material-fabrication techniques based ...
Magneto-transport Properties of Skyrmions and Chiral Spin Structures in MnSi
This book provides extensive and novel insights into transport phenomena in MnSi, paving the way for applying the topology and chirality of spin textures to the development of spintronics devices. In particular, it describes in detail the key measurements, e.g. magnetoresistance and nonlinear electronic transport, and multiple material-fabrication techniques based on molecular beam epitaxy, ion-beam microfabrication and micromagnetic simulation. The book also reviews key aspects of B20-type MnSi chiral magnets, which host magnetic skyrmions, nanoscale objects formed by helical spatial spin structures. Readers are then introduced to cutting-edge findings on the material. Furthermore, by reviewing the author's successful experiments, the book provides readers with a valuable update on the latest achievements in the measurement and fabrication of magnetic materials in spintronics.
https://magrudy-assets.storage.googleapis.com/9789813293847.jpg
167.990000 USD

Magneto-transport Properties of Skyrmions and Chiral Spin Structures in MnSi

by Tomoyuki Yokouchi
Hardback
Book cover image
This thesis provides the first comprehensive theoretical overview of the electronic and optical properties of two dimensional (2D) Indium Selenide: atomically thin films of InSe ranging from monolayers to few layers in thickness. The thesis shows how the electronic propertes of 2D InSe vary significantly with film thickness, changing from ...
Theory of Electronic and Optical Properties of Atomically Thin Films of Indium Selenide
This thesis provides the first comprehensive theoretical overview of the electronic and optical properties of two dimensional (2D) Indium Selenide: atomically thin films of InSe ranging from monolayers to few layers in thickness. The thesis shows how the electronic propertes of 2D InSe vary significantly with film thickness, changing from a weakly indirect semiconductor for the monolayer to a direct gap material in the bulk form, with a strong band gap variation with film thickness predicted and recently observed in optical experiments. The proposed theory is based on a specially designed hybrid k.p tight-binding model approach (HkpTB), which uses an intralayer k.p Hamiltonian to describe the InSe monolayer, and tight-binding-like interlayer hopping. Electronic and optical absorption spectra are determined, and a detailed description of subbands of electrons in few-layer films and the influence of spin-orbit coupling is provided. The author shows that the principal optical excitations of InSe films with the thickness from 1 to 15 layers broadly cover the visible spectrum, with the possibility of extending optical functionality into the infrared and THz range using intersubband transitions.
https://magrudy-assets.storage.googleapis.com/9783030257149.jpg
167.990000 USD

Theory of Electronic and Optical Properties of Atomically Thin Films of Indium Selenide

by Samuel J. Magorrian
Hardback
Book cover image
Authored by world-leading physicists, this introductory textbook explores the basic principles of polymers, colloids, liquid crystals, wetting, and foams. It is a practical 'toolbox' for readers to acquire basic knowledge in the field and facilitate further reading and advanced courses. Undergraduate students in physics, biology, and the medical sciences will ...
Essentials of Soft Matter Science
Authored by world-leading physicists, this introductory textbook explores the basic principles of polymers, colloids, liquid crystals, wetting, and foams. It is a practical 'toolbox' for readers to acquire basic knowledge in the field and facilitate further reading and advanced courses. Undergraduate students in physics, biology, and the medical sciences will learn the basics of soft matter physics, in addition to scaling approaches in the spirit of the Nobel prize laureate in physics in 1991, Pierre-Gilles de Gennes, the inventor of soft matter physics and close collaborator to author Francoise Brochard-Wyart. Features: Accessible and compact approach Contains interesting examples from everyday life (including the Paris Metro, a water spider, a gecko, and duck feathers) Accompanied by additional exercises to enhance understanding available for download from the CRC Press website
https://magrudy-assets.storage.googleapis.com/9781498773928.jpg
124.58 USD

Essentials of Soft Matter Science

by Pierre-Henri Puech, Pierre Nassoy, Francoise Brochard-Wyart
Paperback / softback
Book cover image
This book describes the direct and inverse problems of the multidimensional Schroedinger operator with a periodic potential, a topic that is especially important in perturbation theory, constructive determination of spectral invariants and finding the periodic potential from the given Bloch eigenvalues. It provides a detailed derivation of the asymptotic formulas ...
Multidimensional Periodic Schroedinger Operator: Perturbation Theory and Applications
This book describes the direct and inverse problems of the multidimensional Schroedinger operator with a periodic potential, a topic that is especially important in perturbation theory, constructive determination of spectral invariants and finding the periodic potential from the given Bloch eigenvalues. It provides a detailed derivation of the asymptotic formulas for Bloch eigenvalues and Bloch functions in arbitrary dimensions while constructing and estimating the measure of the iso-energetic surfaces in the high-energy regime. Moreover, it presents a unique method proving the validity of the Bethe-Sommerfeld conjecture for arbitrary dimensions and arbitrary lattices. Using the perturbation theory constructed, it determines the spectral invariants of the multidimensional operator from the given Bloch eigenvalues. Some of these invariants are explicitly expressed by the Fourier coefficients of the potential, making it possible to determine the potential constructively using Bloch eigenvalues as input data. Lastly, the book presents an algorithm for the unique determination of the potential. This updated second edition includes an additional chapter that specifically focuses on lower-dimensional cases, providing the basis for the higher-dimensional considerations of the chapters that follow.
https://magrudy-assets.storage.googleapis.com/9783030245771.jpg
157.490000 USD

Multidimensional Periodic Schroedinger Operator: Perturbation Theory and Applications

by Oktay Veliev
Hardback
Book cover image
Future Directions in Silicon Photonics, Volume 101 in the Semiconductors and Semimetals series, highlights new advances in the field, with this updated volume presenting the latest developments as discussed by esteemed leaders in the field silicon photonics.
Future Directions in Silicon Photonics: Volume 101
Future Directions in Silicon Photonics, Volume 101 in the Semiconductors and Semimetals series, highlights new advances in the field, with this updated volume presenting the latest developments as discussed by esteemed leaders in the field silicon photonics.
https://magrudy-assets.storage.googleapis.com/9780128188576.jpg
277.10 USD

Future Directions in Silicon Photonics: Volume 101

by Jagadish
Hardback
Book cover image
This book highlights the symmetry properties of acoustic fields and describes the gauge invariance approach, which can be used to reveal those properties. Symmetry is the key theoretical framework of metamaterials, as has been demonstrated by the successful fabrication of acoustical metamaterials. The book first provides the necessary theoretical background, ...
Gauge Invariance Approach to Acoustic Fields
This book highlights the symmetry properties of acoustic fields and describes the gauge invariance approach, which can be used to reveal those properties. Symmetry is the key theoretical framework of metamaterials, as has been demonstrated by the successful fabrication of acoustical metamaterials. The book first provides the necessary theoretical background, which includes the covariant derivative, the vector potential, and invariance in coordinate transformation. This is followed by descriptions of global gauge invariance (isotropy), and of local gauge invariance (anisotropy). Sections on time reversal symmetry, reflection invariance, and invariance of finite amplitude waves round out the coverage.
https://magrudy-assets.storage.googleapis.com/9789811387500.jpg
178.490000 USD

Gauge Invariance Approach to Acoustic Fields

by Woon Siong Gan
Hardback
Book cover image
This thesis offers a fascinating journey through various non-perturbative aspects of Conformal Theories, in particular focusing on the Conformal Bootstrap Programme and its extensions to theories with various degrees of symmetry. Because of the preeminent role of Conformal Theories in Nature, as well as the great generality of the results ...
Points, Lines, and Surfaces at Criticality
This thesis offers a fascinating journey through various non-perturbative aspects of Conformal Theories, in particular focusing on the Conformal Bootstrap Programme and its extensions to theories with various degrees of symmetry. Because of the preeminent role of Conformal Theories in Nature, as well as the great generality of the results here obtained, this analysis directly applies to many different areas of research. The content of this thesis is certainly relevant for the physics community as a whole and this relevance is well motivated and discussed along the various chapters of this work. The work is self-contained and starts with an original introduction to conformal theories, defects in such theories and how they lead to constraints on data and an extension of the bootstrap programme. This situation is often realized by critical systems with impurities, topological insulators, or - in the high-energy context - by Wilson and 't Hooft operators. The thesis continues with original research results of the author, including supersymmetric extensions. These results may be relevant non only in the high energy physics context - where supersymmetry is required for the theory to be consistent - but also for condensed matter systems that enjoy supersymmetry emergence at long distances.
https://magrudy-assets.storage.googleapis.com/9783030257293.jpg
157.490000 USD

Points, Lines, and Surfaces at Criticality

by Edoardo Lauria
Hardback
Book cover image
This revised edition continues to provide the most approachable introduction to the structure, characteristics, and everyday applications of soft matter. It begins with a substantially revised overview of the underlying physics and chemistry common to soft materials. Subsequent chapters comprehensively address the different classes of soft materials, from liquid crystals ...
Fundamentals of Soft Matter Science
This revised edition continues to provide the most approachable introduction to the structure, characteristics, and everyday applications of soft matter. It begins with a substantially revised overview of the underlying physics and chemistry common to soft materials. Subsequent chapters comprehensively address the different classes of soft materials, from liquid crystals to surfactants, polymers, colloids, and biomaterials, with vivid, full-color illustrations throughout. There are new worked examples throughout, new problems, some deeper mathematical treatment, and new sections on key topics such as diffusion, active matter, liquid crystal defects, surfactant phases and more. * Introduces the science of soft materials, experimental methods used in their study, and wide-ranging applications in everyday life. * Provides brand new worked examples throughout, in addition to expanded chapter problem sets and an updated glossary. * Includes expanded mathematical content and substantially revised introductory chapters. This book will provide a comprehensive introductory resource to both undergraduate and graduate students discovering soft materials for the first time and is aimed at students with an introductory college background in physics, chemistry or materials science.
https://magrudy-assets.storage.googleapis.com/9781138724440.jpg
139.46 USD

Fundamentals of Soft Matter Science

by Linda S. Hirst
Paperback / softback
Book cover image
This thesis deals with topological orders from two different perspectives: from a condensed matter point of view, where topological orders are considered as breakthrough phases of matter; and from the emerging realm of quantum computation, where topological quantum codes are considered the most appealing platform against decoherence. The thesis reports ...
Topological Orders with Spins and Fermions: Quantum Phases and Computation
This thesis deals with topological orders from two different perspectives: from a condensed matter point of view, where topological orders are considered as breakthrough phases of matter; and from the emerging realm of quantum computation, where topological quantum codes are considered the most appealing platform against decoherence. The thesis reports remarkable studies from both sides. It thoroughly investigates a topological order called the double semion model, a counterpart of the Kitaev model but exhibiting richer quasiparticles as excitations. A new model for symmetry enriched topological order is constructed, which adds an onsite global symmetry to the double semion model. Using this topological phase, a new example of topological code is developed, the semion code, which is non-CSS, additive, non-Pauli and within the stabiliser formalism. Furthermore, the thesis analyses the Rashba spin-orbit coupling within topological insulators, turning the helical edge states into generic edges modes with potential application in spinstronics. New types of topological superconductors are proposed and the novel properties of the correspondingly created Majorana fermions are investigated. These Majorana fermions have inherent properties enabling braiding and the performance of logical gates as fundamental blocks for a universsal quantum computator.
https://magrudy-assets.storage.googleapis.com/9783030236489.jpg
178.490000 USD

Topological Orders with Spins and Fermions: Quantum Phases and Computation

by Laura Ortiz Martin
Hardback
Book cover image
Quantum mechanics was initially constructed to describe objects on atomic and subatomic scales. However, in the last decades, quantum mechanics has been revisited and its use extended to the study and description of macroscopic distinct states. This is accomplished by modeling basic objects of mesoscopic physics, such as superconducting quantum ...
Mesoscopic Physics Meets Quantum Engineering
Quantum mechanics was initially constructed to describe objects on atomic and subatomic scales. However, in the last decades, quantum mechanics has been revisited and its use extended to the study and description of macroscopic distinct states. This is accomplished by modeling basic objects of mesoscopic physics, such as superconducting quantum circuits and low-dimensional structures derived from a two-dimensional electronic gas. In recent years, these devices support the study of fundamental systems such as a two-level quantum system, or qubit, as an object for manipulations and applications. This book will provide an introduction to quantum computation and quantum information, based on quantum physics, solid-state theory, and theory of computing. We will become familiar with this important field and explore how it is inseparably linked to basic notions of physics such as superposition, entanglement, and quantum dynamics. Then we will consider superconducting and mesoscopic systems, as well as a series of phenomena, where important are the spectra quantization, interference, and charge discreteness.This book derives its content from a lecture course designed for graduate students and postdocs who are acquainted with quantum mechanics and statistical physics. In particular, it was developed together with the lecture series taught to 5th year students of the Department of Physics and Technology in V N Karazin Kharkiv National University.
https://magrudy-assets.storage.googleapis.com/9789811201394.jpg
71.400000 USD

Mesoscopic Physics Meets Quantum Engineering

by Sergey N Shevchenko
Hardback
Book cover image
Heterostructured nanoparticles have the capability for a broad range of novel and enhanced properties, which leads to appealing biomedical and environmental applications. This timely new book addresses the design and preparation of multiphase nanomaterials with desired size, shape, phase composition, and crystallinity, as well as their current applications. It emphasizes ...
Nanohybrids in Environmental & Biomedical Applications
Heterostructured nanoparticles have the capability for a broad range of novel and enhanced properties, which leads to appealing biomedical and environmental applications. This timely new book addresses the design and preparation of multiphase nanomaterials with desired size, shape, phase composition, and crystallinity, as well as their current applications. It emphasizes key examples to motivate deeper studies, including nanomaterial-based hyperthermia treatment of cancer, nanohybrids for water purification, nanostructures used in the removal or detection of bioagents from waste water, and so on. Features Presents state of the art research on heterostructured nanomaterials, from their synthesis and physiochemical properties to current environmental and biological applications. Includes details on toxicity and risk assessment of multifunctional nanomaterials. Discusses recent developments and utilization in healthcare by leading experts. Introduces the main features of functionalization of nanomaterials in terms of desired size, shape, phase composition, surface functionalization/coating, toxicity, and geometry. Emphasizes practical applications in the environmental and biomedical sectors.
https://magrudy-assets.storage.googleapis.com/9780815367628.jpg
189.000000 USD

Nanohybrids in Environmental & Biomedical Applications

Hardback
Page 1 of 40