Filter
(found 13336 products)
Book cover image
Prepare students for 21st century success with... Seamlessly integrated print, digital, and interactive content that connects with students anytime and on any device Complete alignment with the Common Core State Standards Support and resources for tailoring instruction to all levels of learners Built-in, frequent assessments that monitor student understanding and ...
Algebra 1, Student Edition
Prepare students for 21st century success with... Seamlessly integrated print, digital, and interactive content that connects with students anytime and on any device Complete alignment with the Common Core State Standards Support and resources for tailoring instruction to all levels of learners Built-in, frequent assessments that monitor student understanding and progress to ensure all students master concepts. Includes Print Student Edition
https://magrudy-assets.storage.googleapis.com/9780078951152.jpg
168.000000 USD

Algebra 1, Student Edition

by McGraw-Hill Education
Hardback
Book cover image
This textbook provides an accessible account of the history of abstract algebra, tracing a range of topics in modern algebra and number theory back to their modest presence in the seventeenth and eighteenth centuries, and exploring the impact of ideas on the development of the subject. Beginning with Gauss's theory ...
A History of Abstract Algebra: From Algebraic Equations to Modern Algebra
This textbook provides an accessible account of the history of abstract algebra, tracing a range of topics in modern algebra and number theory back to their modest presence in the seventeenth and eighteenth centuries, and exploring the impact of ideas on the development of the subject. Beginning with Gauss's theory of numbers and Galois's ideas, the book progresses to Dedekind and Kronecker, Jordan and Klein, Steinitz, Hilbert, and Emmy Noether. Approaching mathematical topics from a historical perspective, the author explores quadratic forms, quadratic reciprocity, Fermat's Last Theorem, cyclotomy, quintic equations, Galois theory, commutative rings, abstract fields, ideal theory, invariant theory, and group theory. Readers will learn what Galois accomplished, how difficult the proofs of his theorems were, and how important Camille Jordan and Felix Klein were in the eventual acceptance of Galois's approach to the solution of equations. The book also describes the relationship between Kummer's ideal numbers and Dedekind's ideals, and discusses why Dedekind felt his solution to the divisor problem was better than Kummer's. Designed for a course in the history of modern algebra, this book is aimed at undergraduate students with an introductory background in algebra but will also appeal to researchers with a general interest in the topic. With exercises at the end of each chapter and appendices providing material difficult to find elsewhere, this book is self-contained and therefore suitable for self-study.
https://magrudy-assets.storage.googleapis.com/9783319947723.jpg
52.490000 USD

A History of Abstract Algebra: From Algebraic Equations to Modern Algebra

by Jeremy Gray
Paperback
Book cover image
Linear Methods: A General Education Course is expressly written for non-mathematical students, particularly freshmen taking a required core mathematics course. Rather than covering a hodgepodge of different topics as is typical for a core mathematics course, this text encourages students to explore one particular branch of mathematics, elementary linear algebra, ...
Linear Methods: A General Education Course
Linear Methods: A General Education Course is expressly written for non-mathematical students, particularly freshmen taking a required core mathematics course. Rather than covering a hodgepodge of different topics as is typical for a core mathematics course, this text encourages students to explore one particular branch of mathematics, elementary linear algebra, in some depth. The material is presented in an accessible manner, as opposed to a traditional overly rigorous approach. While introducing students to useful topics in linear algebra, the book also includes a gentle introduction to more abstract facets of the subject. Many relevant uses of linear algebra in today's world are illustrated, including applications involving business, economics, elementary graph theory, Markov chains, linear regression and least-squares polynomials, geometric transformations, and elementary physics. The authors have included proofs of various important elementary theorems and properties which provide readers with the reasoning behind these results. Features: Written for a general education core course in introductory mathematics Introduces elementary linear algebra concepts to non-mathematics majors Provides an informal introduction to elementary proofs involving matrices and vectors Includes useful applications from linear algebra related to business, graph theory, regression, and elementary physics Authors Bio: David Hecker is a Professor of Mathematics at Saint Joseph's University in Philadelphia. He received his Ph.D. from Rutgers University and has published several journal articles. He also co-authored several editions of Elementary Linear Algebra with Stephen Andrilli. Stephen Andrilli is a Professor in the Mathematics and Computer Science Department at La Salle University in Philadelphia. He received his Ph.D. from Rutgers University and also co-authored several editions of Elementary Linear Algebra with David Hecker.
https://magrudy-assets.storage.googleapis.com/9781138049215.jpg
131.39 USD

Linear Methods: A General Education Course

by Stephen Andrilli, David Hecker
Paperback / softback
Book cover image
Divisors and Sandpiles provides an introduction to the combinatorial theory of chip-firing on finite graphs. Part 1 motivates the study of the discrete Laplacian by introducing the dollar game. The resulting theory of divisors on graphs runs in close parallel to the geometric theory of divisors on Riemann surfaces, and ...
Divisors and Sandpiles: An Introduction to Chip-Firing
Divisors and Sandpiles provides an introduction to the combinatorial theory of chip-firing on finite graphs. Part 1 motivates the study of the discrete Laplacian by introducing the dollar game. The resulting theory of divisors on graphs runs in close parallel to the geometric theory of divisors on Riemann surfaces, and Part I culminates in a full exposition of the graph-theoretic Riemann-Roch theorem due to M. Baker and S. Norine. The text leverages the reader's understanding of the discrete story to provide a brief overview of the classical theory of Riemann surfaces. Part 2 focuses on sandpiles, which are toy models of physical systems with dynamics controlled by the discrete Laplacian of the underlying graph. The text provides a careful introduction to the sandpile group and the abelian sandpile model, leading ultimately to L. Levine's threshold density theorem for the fixed-energy sandpile Markov chain. In a precise sense, the theory of sandpiles is dual to the theory of divisors, and there are many beautiful connections between the first two parts of the book. Part 3 addresses various topics connecting the theory of chip-firing to other areas of mathematics, including the matrix-tree theorem, harmonic morphisms, parking functions, $M$-matrices, matroids, the Tutte polynomial, and simplicial homology. The text is suitable for advanced undergraduates and beginning graduate students.
https://magrudy-assets.storage.googleapis.com/9781470442187.jpg
133.00 USD

Divisors and Sandpiles: An Introduction to Chip-Firing

by David Perkinson, Scott Corry
Paperback / softback
Book cover image
Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill ...
Number Fields
Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.
https://magrudy-assets.storage.googleapis.com/9783319902326.jpg
52.490000 USD

Number Fields

by Daniel A. Marcus
Paperback
Book cover image
A consistent and near complete survey of the important progress made in the field over the last few years, with the main emphasis on the rigidity method and its applications. Among others, this monograph presents the most successful existence theorems known and construction methods for Galois extensions as well as ...
Inverse Galois Theory
A consistent and near complete survey of the important progress made in the field over the last few years, with the main emphasis on the rigidity method and its applications. Among others, this monograph presents the most successful existence theorems known and construction methods for Galois extensions as well as solutions for embedding problems combined with a collection of the existing Galois realizations.
https://magrudy-assets.storage.googleapis.com/9783662554197.jpg
167.990000 USD

Inverse Galois Theory

by B.H. Matzat, Gunter Malle
Hardback
Book cover image
This book discusses the ways in which the algebras in a locally finite quasivariety determine its lattice of subquasivarieties. The book starts with a clear and comprehensive presentation of the basic structure theory of quasivariety lattices, and then develops new methods and algorithms for their analysis. Particular attention is paid ...
The Lattice of Subquasivarieties of a Locally Finite Quasivariety
This book discusses the ways in which the algebras in a locally finite quasivariety determine its lattice of subquasivarieties. The book starts with a clear and comprehensive presentation of the basic structure theory of quasivariety lattices, and then develops new methods and algorithms for their analysis. Particular attention is paid to the role of quasicritical algebras. The methods are illustrated by applying them to quasivarieties of abelian groups, modular lattices, unary algebras and pure relational structures. An appendix gives an overview of the theory of quasivarieties. Extensive references to the literature are provided throughout.
https://magrudy-assets.storage.googleapis.com/9783319782348.jpg
94.490000 USD

The Lattice of Subquasivarieties of a Locally Finite Quasivariety

by J. B. Nation, Jennifer Hyndman
Hardback
Book cover image
Gorenstein homological algebra is an important area of mathematics, with applications in commutative and noncommutative algebra, model category theory, representation theory, and algebraic geometry. While in classical homological algebra the existence of the projective, injective, and flat resolutions over arbitrary rings are well known, things are a little different when ...
Gorenstein Homological Algebra
Gorenstein homological algebra is an important area of mathematics, with applications in commutative and noncommutative algebra, model category theory, representation theory, and algebraic geometry. While in classical homological algebra the existence of the projective, injective, and flat resolutions over arbitrary rings are well known, things are a little different when it comes to Gorenstein homological algebra. The main open problems in this area deal with the existence of the Gorenstein injective, Gorenstein projective, and Gorenstein flat resolutions. Gorenstein Homological Algebra is especially suitable for graduate students interested in homological algebra and its applications.
https://magrudy-assets.storage.googleapis.com/9781138065499.jpg
156.98 USD

Gorenstein Homological Algebra

by Alina Iacob
Hardback
Book cover image
This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. ...
Positive Operator Semigroups: From Finite to Infinite Dimensions
This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes. In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed. The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises. An up-to-date bibliography and a detailed subject index help the interested reader. The book is intended primarily for graduate and master students. The finite dimensional part, however, can be followed by an advanced bachelor with a solid knowledge of linear algebra and calculus.
https://magrudy-assets.storage.googleapis.com/9783319826707.jpg
94.490000 USD

Positive Operator Semigroups: From Finite to Infinite Dimensions

by Abdelaziz Rhandi, Marjeta Kramar Fijavz, Andras Batkai
Paperback / softback
Book cover image
This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for ...
A Group Theoretic Approach to Quantum Information
This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory.
https://magrudy-assets.storage.googleapis.com/9783319832487.jpg
73.490000 USD

A Group Theoretic Approach to Quantum Information

by Masahito Hayashi
Paperback / softback
Book cover image
This volume contains selected papers authored by speakers and participants of the 2013 Arbeitstagung, held at the Max Planck Institute for Mathematics in Bonn, Germany, from May 22-28. The 2013 meeting (and this resulting proceedings) was dedicated to the memory of Friedrich Hirzebruch, who passed away on May 27, 2012. ...
Arbeitstagung Bonn 2013: In Memory of Friedrich Hirzebruch
This volume contains selected papers authored by speakers and participants of the 2013 Arbeitstagung, held at the Max Planck Institute for Mathematics in Bonn, Germany, from May 22-28. The 2013 meeting (and this resulting proceedings) was dedicated to the memory of Friedrich Hirzebruch, who passed away on May 27, 2012. Hirzebruch organized the first Arbeitstagung in 1957 with a unique concept that would become its most distinctive feature: the program was not determined beforehand by the organizers, but during the meeting by all participants in an open discussion. This ensured that the talks would be on the latest developments in mathematics and that many important results were presented at the conference for the first time. Written by leading mathematicians, the papers in this volume cover various topics from algebraic geometry, topology, analysis, operator theory, and representation theory and display the breadth and depth of pure mathematics that has always been characteristic of the Arbeitstagung.
https://magrudy-assets.storage.googleapis.com/9783319828763.jpg
146.990000 USD

Arbeitstagung Bonn 2013: In Memory of Friedrich Hirzebruch

Paperback / softback
Book cover image
This monograph provides a modern introduction to the theory of quantales. First coined by C.J. Mulvey in 1986, quantales have since developed into a significant topic at the crossroads of algebra and logic, of notable interest to theoretical computer science. This book recasts the subject within the powerful framework of ...
Semigroups in Complete Lattices: Quantales, Modules and Related Topics
This monograph provides a modern introduction to the theory of quantales. First coined by C.J. Mulvey in 1986, quantales have since developed into a significant topic at the crossroads of algebra and logic, of notable interest to theoretical computer science. This book recasts the subject within the powerful framework of categorical algebra, showcasing its versatility through applications to C*- and MV-algebras, fuzzy sets and automata. With exercises and historical remarks at the end of each chapter, this self-contained book provides readers with a valuable source of references and hints for future research. This book will appeal to researchers across mathematics and computer science with an interest in category theory, lattice theory, and many-valued logic.
https://magrudy-assets.storage.googleapis.com/9783319789477.jpg
135.450000 USD

Semigroups in Complete Lattices: Quantales, Modules and Related Topics

by Jari Kortelainen, Ulrich Hoehle, Javier Gutie rrez Garci a, Patrik Eklund
Hardback
Book cover image
The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert-Remmert's two volumes, GL227(236) (Theory of Stein ...
Analytic Function Theory of Several Variables: Elements of Oka's Coherence
The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert-Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps).The core of the theory is Oka's Coherence , found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appears much later.The present book, consisting of nine chapters, gives complete treatments of the following items: Coherence of sheaves of holomorphic functions (Chap. 2); Oka-Cartan's Fundamental Theorem (Chap. 4); Coherence of ideal sheaves of complex analytic subsets (Chap. 6); Coherence of the normalization sheaves of complex spaces (Chap. 6); Grauert's Finiteness Theorem (Chaps. 7, 8); Oka's Theorem for Riemann domains (Chap. 8). The theories of sheaf cohomology and domains of holomorphy are also presented (Chaps. 3, 5). Chapter 6 deals with the theory of complex analytic subsets. Chapter 8 is devoted to the applications of formerly obtained results, proving Cartan-Serre's Theorem and Kodaira's Embedding Theorem. In Chap. 9, we discuss the historical development of Coherence .It is difficult to find a book at this level that treats all of the above subjects in a completely self-contained manner. In the present volume, a number of classical proofs are improved and simplified, so that the contents are easily accessible for beginning graduate students.
https://magrudy-assets.storage.googleapis.com/9789811091247.jpg
94.490000 USD

Analytic Function Theory of Several Variables: Elements of Oka's Coherence

by Junjiro Noguchi
Paperback / softback
Book cover image
This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation ...
Applied Linear Algebra
This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the underlying linear algebraic techniques, thereby enabling students not only to learn how to apply the mathematical tools in routine contexts, but also to understand what is required to adapt to unusual or emerging problems. No previous knowledge of linear algebra is needed to approach this text, with single-variable calculus as the only formal prerequisite. However, the reader will need to draw upon some mathematical maturity to engage in the increasing abstraction inherent to the subject. Once equipped with the main tools and concepts from this book, students will be prepared for further study in differential equations, numerical analysis, data science and statistics, and a broad range of applications. The first author's text, Introduction to Partial Differential Equations, is an ideal companion volume, forming a natural extension of the linear mathematical methods developed here.
https://magrudy-assets.storage.googleapis.com/9783319910406.jpg
78.740000 USD

Applied Linear Algebra

by Chehrzad Shakiban, Peter J. Olver
Hardback
Book cover image
The book is the first book on complex matrix equations including the conjugate of unknown matrices. The study of these conjugate matrix equations is motivated by the investigations on stabilization and model reference tracking control for discrete-time antilinear systems, which are a particular kind of complex system with structure constraints. ...
Complex Conjugate Matrix Equations for Systems and Control
The book is the first book on complex matrix equations including the conjugate of unknown matrices. The study of these conjugate matrix equations is motivated by the investigations on stabilization and model reference tracking control for discrete-time antilinear systems, which are a particular kind of complex system with structure constraints. It proposes useful approaches to obtain iterative solutions or explicit solutions for several types of complex conjugate matrix equation. It observes that there are some significant differences between the real/complex matrix equations and the complex conjugate matrix equations. For example, the solvability of a real Sylvester matrix equation can be characterized by matrix similarity; however, the solvability of the con-Sylvester matrix equation in complex conjugate form is related to the concept of con-similarity. In addition, the new concept of conjugate product for complex polynomial matrices is also proposed in order to establish a unified approach for solving a type of complex matrix equation.
https://magrudy-assets.storage.googleapis.com/9789811092169.jpg
146.990000 USD

Complex Conjugate Matrix Equations for Systems and Control

by Ying Zhang, Ai-guo Wu
Paperback / softback
Book cover image
This book introduces and develops new algebraic methods to work with relations, often conceived as Boolean matrices, and applies them to topology. Although these objects mirror the matrices that appear throughout mathematics, numerics, statistics, engineering, and elsewhere, the methods used to work with them are much less well known. In ...
Relational Topology
This book introduces and develops new algebraic methods to work with relations, often conceived as Boolean matrices, and applies them to topology. Although these objects mirror the matrices that appear throughout mathematics, numerics, statistics, engineering, and elsewhere, the methods used to work with them are much less well known. In addition to their purely topological applications, the volume also details how the techniques may be successfully applied to spatial reasoning and to logics of computer science. Topologists will find several familiar concepts presented in a concise and algebraically manipulable form which is far more condensed than usual, but visualized via represented relations and thus readily graspable. This approach also offers the possibility of handling topological problems using proof assistants.
https://magrudy-assets.storage.googleapis.com/9783319744506.jpg
57.740000 USD

Relational Topology

by Michael Winter, Gunther Schmidt
Paperback / softback
Book cover image
This monograph covers the theory of finite and infinite matrices over the fields of real numbers, complex numbers and over quaternions. Emphasizing topics such as sections or truncations and their relationship to the linear operator theory on certain specific separable and sequence spaces, the authors explore techniques like conformal mapping, ...
Infinite Matrices and Their Recent Applications
This monograph covers the theory of finite and infinite matrices over the fields of real numbers, complex numbers and over quaternions. Emphasizing topics such as sections or truncations and their relationship to the linear operator theory on certain specific separable and sequence spaces, the authors explore techniques like conformal mapping, iterations and truncations that are used to derive precise estimates in some cases and explicit lower and upper bounds for solutions in the other cases. Most of the matrices considered in this monograph have typically special structures like being diagonally dominated or tridiagonal, possess certain sign distributions and are frequently nonsingular. Such matrices arise, for instance, from solution methods for elliptic partial differential equations. The authors focus on both theoretical and computational aspects concerning infinite linear algebraic equations, differential systems and infinite linear programming, among others. Additionally, the authors cover topics such as Bessel's and Mathieu's equations, viscous fluid flow in doubly connected regions, digital circuit dynamics and eigenvalues of the Laplacian.
https://magrudy-assets.storage.googleapis.com/9783319807416.jpg
115.490000 USD

Infinite Matrices and Their Recent Applications

by Yang Zhang, K.C. Sivakumar, P.N. Shivakumar
Paperback / softback
Book cover image
Aufmann's DISCOVERING MATHEMATICS: A QUANTITATIVE REASONING APPROACH with WebAssign helps you learn mathematics in the context of the world around you. Focusing on topics relevant to your life and developing critical-thinking skills that you can apply beyond the course, this text provides you with exactly what you need for the ...
Discovering Mathematics: A Quantitative Reasoning Approach
Aufmann's DISCOVERING MATHEMATICS: A QUANTITATIVE REASONING APPROACH with WebAssign helps you learn mathematics in the context of the world around you. Focusing on topics relevant to your life and developing critical-thinking skills that you can apply beyond the course, this text provides you with exactly what you need for the world around you in an approachable, engaging and streamlined format.
https://magrudy-assets.storage.googleapis.com/9780357022610.jpg
109.19 USD

Discovering Mathematics: A Quantitative Reasoning Approach

by Richard Aufmann
Hardback
Book cover image
This book begins with the fundamentals of the generalized inverses, then moves to more advanced topics. It presents a theoretical study of the generalization of Cramer's rule, determinant representations of the generalized inverses, reverse order law of the generalized inverses of a matrix product, structures of the generalized inverses of ...
Generalized Inverses: Theory and Computations
This book begins with the fundamentals of the generalized inverses, then moves to more advanced topics. It presents a theoretical study of the generalization of Cramer's rule, determinant representations of the generalized inverses, reverse order law of the generalized inverses of a matrix product, structures of the generalized inverses of structured matrices, parallel computation of the generalized inverses, perturbation analysis of the generalized inverses, an algorithmic study of the computational methods for the full-rank factorization of a generalized inverse, generalized singular value decomposition, imbedding method, finite method, generalized inverses of polynomial matrices, and generalized inverses of linear operators. This book is intended for researchers, postdocs, and graduate students in the area of the generalized inverses with an undergraduate-level understanding of linear algebra.
https://magrudy-assets.storage.googleapis.com/9789811301452.jpg
135.450000 USD

Generalized Inverses: Theory and Computations

by Sanzheng Qiao, Yimin Wei, Guorong Wang
Hardback
Book cover image
This monograph provides a comprehensive introduction to the Kazhdan-Lusztig theory of cells in the broader context of the unequal parameter case. Serving as a useful reference, the present volume offers a synthesis of significant advances made since Lusztig's seminal work on the subject was published in 2002. The focus lies ...
Kazhdan-Lusztig Cells with Unequal Parameters
This monograph provides a comprehensive introduction to the Kazhdan-Lusztig theory of cells in the broader context of the unequal parameter case. Serving as a useful reference, the present volume offers a synthesis of significant advances made since Lusztig's seminal work on the subject was published in 2002. The focus lies on the combinatorics of the partition into cells for general Coxeter groups, with special attention given to induction methods, cellular maps and the role of Lusztig's conjectures. Using only algebraic and combinatorial methods, the author carefully develops proofs, discusses open conjectures, and presents recent research, including a chapter on the action of the cactus group. Kazhdan-Lusztig Cells with Unequal Parameters will appeal to graduate students and researchers interested in related subject areas, such as Lie theory, representation theory, and combinatorics of Coxeter groups. Useful examples and various exercises make this book suitable for self-study and use alongside lecture courses. Information for readers: The character {\mathbb{Z}} has been corrupted in the print edition of this book and appears incorrectly with a diagonal line running through the symbol.
https://magrudy-assets.storage.googleapis.com/9783319707358.jpg
146.990000 USD

Kazhdan-Lusztig Cells with Unequal Parameters

by Cedric Bonnafe
Hardback
Book cover image
Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan-Scott theory are presented not only for primitive permutation groups but also for the ...
London Mathematical Society Lecture Note Series: Series Number 449: Permutation Groups and Cartesian Decompositions
Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan-Scott theory are presented not only for primitive permutation groups but also for the larger families of quasiprimitive and innately transitive groups, including several classes of infinite permutation groups. Their precision is sharpened by the introduction of a cartesian decomposition concept. This facilitates reduction arguments for primitive groups analogous to those, using orbits and partitions, that reduce problems about general permutation groups to primitive groups. The results are particularly powerful for finite groups, where the finite simple group classification is invoked. Applications are given in algebra and combinatorics to group actions that preserve cartesian product structures. Students and researchers with an interest in mathematical symmetry will find the book enjoyable and useful.
https://magrudy-assets.storage.googleapis.com/9780521675062.jpg
94.500000 USD

London Mathematical Society Lecture Note Series: Series Number 449: Permutation Groups and Cartesian Decompositions

by Csaba Schneider, Cheryl E. Praeger
Paperback / softback
Book cover image
Based on and enriched by the long-term teaching experience of the authors, this volume covers the major themes of mathematics in engineering and technical specialties. The book addresses the elements of linear algebra and analytic geometry, differential calculus of a function of one variable, and elements of higher algebra. On ...
Higher Mathematics for Engineering and Technology: Problems and Solutions
Based on and enriched by the long-term teaching experience of the authors, this volume covers the major themes of mathematics in engineering and technical specialties. The book addresses the elements of linear algebra and analytic geometry, differential calculus of a function of one variable, and elements of higher algebra. On each theme the authors first present short theoretical overviews and then go on to give problems to be solved. The authors provide the solutions to some typical, relatively difficult problems and guidelines for solving them. The authors consider the development of the self-dependent thinking ability of students in the construction of problems and indicate which problems are relatively difficult. The book is geared so that some of the problems presented can be solved in class, and others are meant to be solved independently. An extensive, explanatory solution of at least one typical problem is included, with emphasis on applications, formulas, and rules. This volume is primarily addressed to advanced students of engineering and technical specialties as well as to engineers/technicians and instructors of mathematics. Key features: Presents the theoretical background necessary for solving problems, including definitions, rules, formulas, and theorems on the particular theme Provides an extended solution of at least one problem on every theme and guidelines for solving some difficult problems Selects problems for independent study as well as those for classroom time, taking into account the similarity of both sets of problems Differentiates relatively difficult problems from others for those who want to study mathematics more deeply Provides answers to the problems within the text rather than at the back of the book, enabling more direct verification of problem solutions Presents a selection of problems and solutions that are very interesting not only for the students but also for professor-teacher staff
https://magrudy-assets.storage.googleapis.com/9781771886420.jpg
170.61 USD

Higher Mathematics for Engineering and Technology: Problems and Solutions

by IIhama M Sabzalieva, Mahir M Sabzaliev
Hardback
Book cover image
This book presents 29 invited articles written by participants of the International Workshop on Operator Theory and its Applications held in Chemnitz in 2017. The contributions include both expository essays and original research papers illustrating the diversity and beauty of insights gained by applying operator theory to concrete problems. The ...
The Diversity and Beauty of Applied Operator Theory
This book presents 29 invited articles written by participants of the International Workshop on Operator Theory and its Applications held in Chemnitz in 2017. The contributions include both expository essays and original research papers illustrating the diversity and beauty of insights gained by applying operator theory to concrete problems. The topics range from control theory, frame theory, Toeplitz and singular integral operators, Schroedinger, Dirac, and Kortweg-de Vries operators, Fourier integral operator zeta-functions, C*-algebras and Hilbert C*-modules to questions from harmonic analysis, Monte Carlo integration, Fibonacci Hamiltonians, and many more. The book offers researchers in operator theory open problems from applications that might stimulate their work and shows those from various applied fields, such as physics, engineering, or numerical mathematics how to use the potential of operator theory to tackle interesting practical problems.
https://magrudy-assets.storage.googleapis.com/9783319759951.jpg
198.450000 USD

The Diversity and Beauty of Applied Operator Theory

Hardback
Book cover image
This book presents the first algebraic treatment of quasi-truth fuzzy logic and covers the algebraic foundations of many-valued logic. It offers a comprehensive account of basic techniques and reports on important results showing the pivotal role played by perfect many-valued algebras (MV-algebras). It is well known that the first-order predicate ...
Fuzzy Logic of Quasi-Truth: An Algebraic Treatment
This book presents the first algebraic treatment of quasi-truth fuzzy logic and covers the algebraic foundations of many-valued logic. It offers a comprehensive account of basic techniques and reports on important results showing the pivotal role played by perfect many-valued algebras (MV-algebras). It is well known that the first-order predicate Lukasiewicz logic is not complete with respect to the canonical set of truth values. However, it is complete with respect to all linearly ordered MV -algebras. As there are no simple linearly ordered MV-algebras in this case, infinitesimal elements of an MV-algebra are allowed to be truth values. The book presents perfect algebras as an interesting subclass of local MV-algebras and provides readers with the necessary knowledge and tools for formalizing the fuzzy concept of quasi true and quasi false. All basic concepts are introduced in detail to promote a better understanding of the more complex ones. It is an advanced and inspiring reference-guide for graduate students and researchers in the field of non-classical many-valued logics.
https://magrudy-assets.storage.googleapis.com/9783319808017.jpg
167.990000 USD

Fuzzy Logic of Quasi-Truth: An Algebraic Treatment

by Esko Turunen, Revaz Grigolia, Antonio Di Nola
Paperback / softback
Book cover image
In this book the authors present an alternative set theory dealing with a more relaxed notion of infiniteness, called finitely supported mathematics (FSM). It has strong connections to the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel (ZF) set theory with atoms and to the theory of (generalized) nominal sets. More exactly, ...
Finitely Supported Mathematics: An Introduction
In this book the authors present an alternative set theory dealing with a more relaxed notion of infiniteness, called finitely supported mathematics (FSM). It has strong connections to the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel (ZF) set theory with atoms and to the theory of (generalized) nominal sets. More exactly, FSM is ZF mathematics rephrased in terms of finitely supported structures, where the set of atoms is infinite (not necessarily countable as for nominal sets). In FSM, 'sets' are replaced either by `invariant sets' (sets endowed with some group actions satisfying a finite support requirement) or by `finitely supported sets' (finitely supported elements in the powerset of an invariant set). It is a theory of `invariant algebraic structures' in which infinite algebraic structures are characterized by using their finite supports. After explaining the motivation for using invariant sets in the experimental sciences as well as the connections with the nominal approach, admissible sets and Gandy machines (Chapter 1), the authors present in Chapter 2 the basics of invariant sets and show that the principles of constructing FSM have historical roots both in the definition of Tarski `logical notions' and in the Erlangen Program of Klein for the classification of various geometries according to invariants under suitable groups of transformations. Furthermore, the consistency of various choice principles is analyzed in FSM. Chapter 3 examines whether it is possible to obtain valid results by replacing the notion of infinite sets with the notion of invariant sets in the classical ZF results. The authors present techniques for reformulating ZF properties of algebraic structures in FSM. In Chapter 4 they generalize FM set theory by providing a new set of axioms inspired by the theory of amorphous sets, and so defining the extended Fraenkel-Mostowski (EFM) set theory. In Chapter 5 they define FSM semantics for certain process calculi (e.g., fusion calculus), and emphasize the links to the nominal techniques used in computer science. They demonstrate a complete equivalence between the new FSM semantics (defined by using binding operators instead of side conditions for presenting the transition rules) and the known semantics of these process calculi. The book is useful for researchers and graduate students in computer science and mathematics, particularly those engaged with logic and set theory.
https://magrudy-assets.storage.googleapis.com/9783319825458.jpg
125.990000 USD

Finitely Supported Mathematics: An Introduction

by Gabriel Ciobanu, Andrei Alexandru
Paperback / softback
Book cover image
This monograph provides an accessible and comprehensive introduction to James Arthur's invariant trace formula, a crucial tool in the theory of automorphic representations. It synthesizes two decades of Arthur's research and writing into one volume, treating a highly detailed and often difficult subject in a clearer and more uniform manner ...
Arthur's Invariant Trace Formula and Comparison of Inner Forms
This monograph provides an accessible and comprehensive introduction to James Arthur's invariant trace formula, a crucial tool in the theory of automorphic representations. It synthesizes two decades of Arthur's research and writing into one volume, treating a highly detailed and often difficult subject in a clearer and more uniform manner without sacrificing any technical details. The book begins with a brief overview of Arthur's work and a proof of the correspondence between GL(n) and its inner forms in general. Subsequent chapters develop the invariant trace formula in a form fit for applications, starting with Arthur's proof of the basic, non-invariant trace formula, followed by a study of the non-invariance of the terms in the basic trace formula, and, finally, an in-depth look at the development of the invariant formula. The final chapter illustrates the use of the formula by comparing it for G' = GL(n) and its inner form G< and for functions with matching orbital integrals. Arthur's Invariant Trace Formula and Comparison of Inner Forms will appeal to advanced graduate students, researchers, and others interested in automorphic forms and trace formulae. Additionally, it can be used as a supplemental text in graduate courses on representation theory.
https://magrudy-assets.storage.googleapis.com/9783319810737.jpg
167.990000 USD

Arthur's Invariant Trace Formula and Comparison of Inner Forms

by Yuval Z. Flicker
Paperback / softback
Book cover image
This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has been described as the science of the ...
Algebra for Cryptologists
This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has been described as the science of the integrity of information, covering all aspects like confidentiality, authenticity and non-repudiation and also including the protocols required for achieving these aims. In both theory and practice it requires notions and constructions from three major disciplines: computer science, electronic engineering and mathematics. Within mathematics, group theory, the theory of finite fields, and elementary number theory as well as some topics not normally covered in courses in algebra, such as the theory of Boolean functions and Shannon theory, are involved. Although essentially self-contained, a degree of mathematical maturity on the part of the reader is assumed, corresponding to his or her background in computer science or engineering. Algebra for Cryptologists is a textbook for an introductory course in cryptography or an upper undergraduate course in algebra, or for self-study in preparation for postgraduate study in cryptology.
https://magrudy-assets.storage.googleapis.com/9783319807997.jpg
62.990000 USD

Algebra for Cryptologists

by Alko R. Meijer
Paperback / softback
Book cover image
Mermaid Primary Composition Journal: Primary Story Journal, Dotted Midline Drawing Notebook, Grade Level K-2, Draw and Write for Early Childhood to Kindergarten
https://magrudy-assets.storage.googleapis.com/9781724421166.jpg
6.290000 USD

Mermaid Primary Composition Journal: Primary Story Journal, Dotted Midline Drawing Notebook, Grade Level K-2, Draw and Write for Early Childhood to Kindergarten

by Joy M Port
Paperback / softback
Book cover image
Chinese Writing Notebook: Chinese Writing and Calligraphy Paper Notebook for Study. Tian Zi GE Paper. Mandarin Pinyin Chinese Writing Paper
https://magrudy-assets.storage.googleapis.com/9781725720213.jpg
6.180000 USD

Chinese Writing Notebook: Chinese Writing and Calligraphy Paper Notebook for Study. Tian Zi GE Paper. Mandarin Pinyin Chinese Writing Paper

by Huan Yue Ting
Paperback / softback
Page 1 of 40