Virtual Principles in Aircraft Structures: v. 1: Analysis : v. 2: Design, Plates, Finite Elements

Series: Mechanics of Structural Systems (v. 6 & 7)
The basic partial differential equations for the stresses and displacements in clas sical three dimensional elasticity theory can be set up in three ways: (1) to solve for the displacements first and then the stresses; (2) to solve for the stresses first and then the displacements; and (3) to solve for both stresses and displacements simultaneously. These three methods are identified in the literature as (1) the displacement method, (2) the stress or force method, and (3) the combined or mixed method. Closed form solutions of the partial differential equations with their complicated boundary conditions for any of these three methods have been obtained only in special cases. In order to obtain solutions, various special methods have been developed to determine the stresses and displacements in structures. The equations have been reduced to two and one dimensional forms for plates, beams, and trusses. By neglecting the local effects at the edges and ends, satisfactory solutions can be obtained for many case . The procedures for reducing the three dimensional equations to two and one dimensional equations are described in Chapter 1, Volume 1, where the various approximations are pointed out.