Sold by Ingram

This product may not be approved for your region.
Paperback / softback
  • Free Shipping

    On orders of AED 100 or more. Standard delivery within 5-15 days.
  • Free Reserve & Collect

    Reserve & Collect from Magrudy's or partner stores accross the UAE.
  • Cash On Delivery

    Pay when your order arrives.
  • Free returns

    See more about our return policy.
Eine Klasse der hypergeometrischen Funktionen bilden die Zylinderfunktio- nen, die durch eine nach F. W. Bessel (1784 - 1846) benannte Differential- gleichung 2. Ordnung definiert und daher auch als Besselfunktionen bezeichnet werden. Die hypergeometrische Funktion ist durch die unendliche Potenzreihe o CI. - 13 _Cl._(, -Cl._] 1-t.)_0 -: -13 0....., (_13+-: -1--'-.) 1 2 F(CI., S, y;x) + - 0 x + o x + .-... loy 1020yo(y+1) definiert, aus der sich viele spezielle Funktionen ableiten lassen, u.a. auch die Losung der o.g. Differentialgleichung. Zylinderfunktionen sind in der allgemeinen Physik haufig gebrauchte Funk- tionen, die sich analytisch durch.lntegralausdrUcke darstellen lassen und die Eigenschaft haben, daB sich relativ allgemein vorgebbare Funktionen in eine nach ihnen fortschreitende Reihe entwickeln lassen. Nachfolgend seien einige wichtige Gebiete genannt, in denen Zylinderfunk- tionen auftreten: Wellenausbreitung in Mechanik, Elektrodynamik, Optik und Wellen- mechanik (Quantentheorie); - Potentialtheorie; - Theorie schwingender Membranen und elastischer Korper; interferometrische Auswertung; Einleitung 2 - Astronomie; - Randwertaufgaben der Akustik und der Warmeleitung; - Hertzscher Dipol; Antennenprobleme; - Lichtleitung in Lichtwellenleitern; - Beugungsphanomene an Zylindern und Offnungen; - Behandlung der radialen Eigenfunktion wellenmechanischer Lasungen; - Entwicklungen nach Besselfunktionen (z.B. zur Darstellung des Amplitudenspektrums frequenzmodulierter Schwingungen); - Verbesserung des Obertragungsverhaltens digitaler Filter. Grundsatzlich kannen Zylinderfunktionen nach Art und Ordnung unterschie- den werden. Somit wird beispielsweise die Zylinderfunktion 1. Art und v- ter Ordnung als einfache Besselfunktion v-ter Ordnung benannt und mit Jv(z) bezeichnet.