Location, Scheduling, Design and Integer Programming

Sold by Ingram

This product may not be approved for your region.
  • Free Shipping

    On orders of AED 100 or more. Standard delivery within 5-15 days.
  • Free Reserve & Collect

    Reserve & Collect from Magrudy's or partner stores accross the UAE.
  • Cash On Delivery

    Pay when your order arrives.
  • Free returns

    See more about our return policy.
Location, scheduling and design problems are assignment type problems with quadratic cost functions and occur in many contexts stretching from spatial economics via plant and office layout planning to VLSI design and similar prob- lems in high-technology production settings. The presence of nonlinear inter- action terms in the objective function makes these, otherwise simple, problems NP hard. In the first two chapters of this monograph we provide a survey of models of this type and give a common framework for them as Boolean quadratic problems with special ordered sets (BQPSs). Special ordered sets associated with these BQPSs are of equal cardinality and either are disjoint as in clique partitioning problems, graph partitioning problems, class-room scheduling problems, operations-scheduling problems, multi-processor assign- ment problems and VLSI circuit layout design problems or have intersections with well defined joins as in asymmetric and symmetric Koopmans-Beckmann problems and quadratic assignment problems. Applications of these problems abound in diverse disciplines, such as anthropology, archeology, architecture, chemistry, computer science, economics, electronics, ergonomics, marketing, operations management, political science, statistical physics, zoology, etc. We then give a survey of the traditional solution approaches to BQPSs. It is an unfortunate fact that even after years of investigation into these problems, the state of algorithmic development is nowhere close to solving large-scale real- life problems exactly. In the main part of this book we follow the polyhedral approach to combinatorial problem solving because of the dramatic algorith- mic successes of researchers who have pursued this approach.