High-Dimensional Partial Differential Equations in Science and Engineering

High-dimensional spatio-temporal partial differential equations are a major challenge to scientific computing of the future. Up to now deemed prohibitive, they have recently become manageable by combining recent developments in numerical techniques, appropriate computer implementations, and the use of computers with parallel and even massively parallel architectures. This opens new perspectives in many fields of applications. Kinetic plasma physics equations, the many body Schrodinger equation, Dirac and Maxwell equations for molecular electronic structures and nuclear dynamic computations, options pricing equations in mathematical finance, as well as Fokker-Planck and fluid dynamics equations for complex fluids, are examples of equations that can now be handled. The objective of this volume is to bring together contributions by experts of international stature in that broad spectrum of areas to confront their approaches and possibly bring out common problem formulations and research directions in the numerical solutions of high-dimensional partial differential equations in various fields of science and engineering with special emphasis on chemistry and physics.Information for our distributors: Titles in this series are co-published with the Centre de Recherches Mathematiques.