Dynamical Systems: Dynamical Systems with Hyperbolic Behaviour: v. 9

Sold by Ingram

This product may not be approved for your region.
  • Free Shipping

    On orders of AED 100 or more. Standard delivery within 5-15 days.
  • Free Reserve & Collect

    Reserve & Collect from Magrudy's or partner stores accross the UAE.
  • Cash On Delivery

    Pay when your order arrives.
  • Free returns

    See more about our return policy.
This volume is devoted to the hyperbolic theory of dynamical systems (DS), that is, the theory of smooth DS's with hyperbolic behaviour of the tra- jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less significant subsets in the phase space. Hyperbolicity the property that under a small displacement of any of a trajectory consists in point of it to one side of the trajectory, the change with time of the relative positions of the original and displaced points resulting from the action of the DS is reminiscent of the mot ion next to a saddle. If there are sufficiently many such trajectories and the phase space is compact, then although they tend to diverge from one another as it were, they have nowhere to go and their behaviour acquires a complicated intricate character. (In the physical literature one often talks about chaos in such situations. ) This type of be- haviour would appear to be the opposite of the more customary and simple type of behaviour characterized by its own kind of stability and regularity of the motions (these words are for the moment not being used as a strict ter- 1 minology but rather as descriptive informal terms). The ergodic properties of DS's with hyperbolic behaviour of trajectories (Bunimovich et al. 1985) have already been considered in Volume 2 of this series. In this volume we therefore consider mainly the properties of a topological character (see below 2 for further details).