Current Options for Cereal Improvement: Doubled Haploids, Mutants and Heterosis Proceedings of the First FAO/IAEA Research Co-Ordination Meeting on Use of Induced Mutations in Connection with Haploids and Heterosis in Cereals , 8-12 December 1986, Guelph

Hardback
China was the first country to use cytoplasmic male sterility to develop hybrid rice for commercial use in 1973. In 1986 more than 8 million hectares of hybrid rice were planted in China, which is one fourth of the total rice area and produces one third of the total rice in the country. Hybrids usually out yield the leading commercial varieties by -20-30%, giving an average yield advantage of 1 to 1. 5 t/ha, because of their better morphological traits, higher physiological efficiency, better resistance to major diseases and insects, and wide adaptability to various agro-ecological stresses. IMPROVEMENT OF HYBRID RICE A. Mutation techniques Almost all of the cultivated F1 rice hybrids in China are developed from cytoplasmic male sterile and restorer lines. According to surveys made in recent years, more than 30 sources of cytoplasmic male sterility in rice can be identified, among which only six are being commercially used (Table 1). Wild rice with aborted pollen (WA) cytosterility system is the most popular one in use to develop male sterile lines (MS line) in China. The main technique available for developing stable MS lines is sUbstitution backcrossing of the genome of one species into alien cytoplasm of another. Sufficient backcrosses are required to eliminate all nuclear genes derived from the cytoplasm donor species. A number of studies have shown that using interspecies crosses, such as the cross of wild rice (Q. perennis, Q. sativa, f.