Control Perspectives on Numerical Algorithms and Matrix Problems

Organizes the analysis and design of iterative numerical methods from a control perspective. The authors discuss a variety of applications, including iterative methods for linear and nonlinear systems of equations, neural networks for linear and quadratic programming problems, support vector machines, integration and shooting methods for ordinary differential equations, matrix preconditioning, matrix stability, and polynomial zero finding. This book opens up a new field of interdisciplinary research that should lead to insights in the areas of both control and numerical analysis and shows that a wide range of applications can be approached from - and benefit from - a control perspective.